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A mean field theory is presented to describe cholesteric phases in mixtures of a polymer and a
cholesteric liquid crystal. Taking into account an anisotropic coupling between a polymer and a liquid
crystal, we examine the helical pitch, twist elastic constant, and phase separations. Analytical expres-
sions of the helical pitch of a cholesteric phase and the twist elastic constant are derived as a function
of the orientational order parameters of a polymer and a liquid crystal and two intermolecular inter-
action parameters. We also find isotropic-cholesteric, cholesteric-cholesteric phase separations, and
polymer-induced cholesteric phase on the temperature-concentration plane. We demonstrate that an
anisotropic coupling between a polymer and a liquid crystal can stabilize a cholesteric phase in the
mixtures. Our theory can also apply to mixtures of a nematic liquid crystal and a chiral dopant. We
discuss the helical twisting power, which depends on temperature, concentration, and orientational
order parameters. It is shown that our theory can qualitatively explain experimental observations.
© 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4828940]

I. INTRODUCTION

In a common nematic phase, the nematic director n is
homogeneous through a system, although, a cholesteric liq-
uid crystal phase is a chiral nematic: the director n is uni-
formly twisted along a perpendicular axis called helical axis.
The distance along the helical axis for the director to twist 2π

is called pitch p = 2π /q, which depends on temperature and
concentration in a system. Since p is comparable to an opti-
cal wavelength, the periodicity results in Bragg scattering of
light beams. This mesoscopic helical structure becomes the
basis of optoelectronic applications such as a twisted nematic
liquid crystal display.1, 2

Cholesteric liquid crystals consist of either chiral
molecules which are optically active molecules or nematic
molecules with chiral dopants.3–5 At small concentration of
a chiral dopant, the pitch is inversely proportional to the
concentration of the chiral dopant.3 Such cholesteric phase
can be stabilized or modified by polymer networks.1, 6 It
is known as the polymer-stabilized cholesteric liquid crys-
tals for electro-optical displays.7–10 The pitch and the phys-
ical properties of cholesterics can be controlled by mixing
cholesteric liquid crystals and polymer chains, or photo re-
active molecules.2, 11–13

It has been shown both experimentally14–17 and
theoretically18–25 that in mixtures of a polymer and a liquid
crystal (so-called polymer dispersed liquid crystals: PDLCs),
phase separations between an isotropic and a nematic or
a smectic phase appears below the nematic-isotropic phase
transition (NIT) temperature of the pure liquid crystal.2 For
strong anisotropic (attractive) interactions between polymers
and liquid crystals, it has been recognized that a smectic phase
can be induced in a nematic liquid crystal mixture.26–28 Such

a)Electronic mail: matuyama@bio.kyutech.ac.jp. URL: http://iona.bio
.kyutech.ac.jp/~aki/.

induced nematic phases have also been predicted in polymer-
liquid crystal mixtures.29 However, theoretical attempts for
cholesteric phases in the mixtures are not numerous.30–33

To describe cholesteric phases, the chiral dispersion
intermolecular interactions have been treated by many
authors.30–48 The configuration of the constituent ith molecule
is characterized by its position vector ri and its orientation
vector �i . It has been shown that the intermolecular chiral
interaction is given by the term (�1 × �2 · r̂12)P1(�1 · �2)
in the lowest order, where r̂12 = (r1 − r2)/|r1 − r2|. The chi-
ral interaction must be odd in �1 · �2, while the nematic in-
teraction be even. The appearance of this term distinguishes
cholesterics from nematics and determines the cholesteric
pitch in an equilibrium state. Lin-Liu et al. have taken into
account the chiral potential in a series of the Legendre polyno-
mials, truncated by P3(�1 · �2).40 They found that the pitch
depends on temperature through a ratio of orientational order
parameters in the form [P4(x)/P2(x)]2. We here treat the chiral
free energy in the lowest order.

The aim of this paper is to develop a mean field theory
to describe cholesteric phases in mixtures of a liquid crys-
tal and a polymer chain. Developing the molecular theory of
the cholesteric phase presented by Lin-Liu et al.,40–42 we de-
rive the free energy of mixtures of a chiral liquid crystal and
a polymer chain. Our main original contribution is to taking
into account the chiral coupling between a polymer and a liq-
uid crystal in the lowest order. As the results, we obtain an-
alytical expressions of the pitch of the cholesteric phase and
the twist elastic constant as a function of orientational order
parameters of a polymer and a liquid crystal. We demonstrate
that the anisotropic coupling between a polymer and a liquid
crystal can stabilize the cholesteric phase in the mixtures. We
also find phase separations between isotropic-cholesteric and
cholesteric-cholesteric phases. Our theory can also apply to
mixtures of a non-chiral nematic liquid crystal and a chiral
molecule. It is well known that a small amount of a chiral
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dopant in a non-chiral nematic liquid crystal phase induces a
cholesteric phase with a helical pitch, which is inversely pro-
portional to the concentration of the chiral dopant molecules.3

We find that the chiral coupling between a liquid crystal and a
chiral dopant creates a helical twisting power, which is given
as a function of the concentration of chiral dopants and orien-
tational order parameters.

In Sec. II, we extend a mean field theory to describe bi-
nary mixtures of a cholesteric liquid crystal and a polymer
chain. In Sec. III, we show some numerical results of pitch,
twist elastic constant, and phase diagrams for the mixtures.
In Sec. IV, pitch and helical twisting power in mixtures of
a non-chiral nematic liquid crystal and a chiral molecule are
discussed.

II. FREE ENERGY OF MIXTURES OF A POLYMER AND
A CHOLESTERIC LIQUID CRYSTAL

A. Chiral free energy

Consider a binary mixture of a liquid crystal molecule
and a polymer chain for which a nematic ordering is for-
bidden in the constituent pure polymer chains. To describe
cholesteric phases of the mixtures, we develop a mean field
model proposed by Lin-Liu et al.40–42 We here take into ac-
count an anisotropic coupling between polymers and liquid
crystals.

Let NP is the number of a polymer chain with nP seg-
ments and NL be the number of a low-molecular weight liquid
crystal molecule of length L and diameter D. The volume of a
liquid crystal and that of a polymer chain are given by
vL = (π/4)D2L and vP = a3nP , respectively. Let
φL = vLNL/V and φP = vP NP /V be the volume frac-
tion of the liquid crystal and the polymer, respectively, where
V is the volume of the system: φL + φP = 1. Using the axial
ratio nL = L/D of the liquid crystal, the volume per liquid
crystal molecule is given by vL = a3nL, where we define
a3 = (π /4)D3.

The free energy consists of the following two terms:

F = Fmix + Fani . (1)

The first term in Eq. (1) is the free energy of mixing of a
polymer and a liquid crystal molecule and is given by Flory-
Huggins theory for polymer solutions:49

a3βFmix/V = φL

nL

ln φL + φP

nP

ln φP + χφLφP , (2)

where χ is the Flory-Huggins interaction parameter between
a liquid crystal and a polymer in an isotropic phase and β

≡ 1/kBT; T is the absolute temperature, kB is the Boltzmann
constant.

The second term in Eq. (1) shows the free energy
for cholesteric phases. The configuration of a constituent
molecule is characterized by its position vector r and its ori-
entation unit vector �, defined by a polar angle θ and an az-
imuthal angle ϕ, or solid angle d�( = sin θdθdϕ), in a fixed
coordinate frame. Let fi(n(r) · �) be the orientational distri-
bution function of a constituent molecule i(= L, P), where
n(r) is the local director. It should be noted that the distri-
bution function depends only on the relative angle between

the local director n(r) and the molecular orientation vector �.
The anisotropic part of the free energy in the second virial
approximation can be given by

βFani/V =
∑

i=L,P

ρi

∫
fi(n(r) · �) ln 4πfi(n(r) · �)drd�

+1

2

∑
i,j=L,P

ρiρj

∫
fi(r1,�1)fj (r2,�2)

×Uij (r1,�1; r2,�2)dR, (3)

where dR ≡ dr1dr2d�1�2 and ρi = Ni/V is the number
density. The first term in Eq. (3) shows the entropy changes
due to orientational ordering and Uij is the orientation-
dependent intermolecular potential between two particles i
and j (i, j = L, P). We here take UPP = 0 because we consider
non-nematic polymer chains in the constituent pure polymers.
The lowest-order contributions to the interaction potential for
the cholesteric phase are given by in a series of the Legendre
polynomials:40

Uij (r1,�1; r2,�2) = Uij,1(r12)(�1 × �2 · r̂12)P1(�1 · �2)

+Uij,2(r12)P2(�1 · �2), (4)

where r12 = r1 − r2 and we have truncated by P2(x). Lin-Liu
et al. have taken into account the intermolecular potential in
a series of the Legendre polynomials by P4(�1 · �2),40 how-
ever there are some unknown numerical parameters related
to the interaction. Equation (4) is useful to reduce the num-
ber of the unknown numerical parameters. The potential Uij, 1

shows the chiral interaction between two particles i and j. The
term �1 × �2 · r̂12 represents scalars coupling between ori-
entational and spatial variables. The potential Uij, 2 shows the
intermolecular potential that accounts for the formation of a
nematic phase, which has been used in Maier-Saupe50 and
Onsager models.51 Following the symmetry consideration for
cholesteric phases, we require that the first term in Eq. (4) is
odd in �1 · �2 and the second term be even.

Substituting Eq. (4) into (3), the anisotropic free energy
can be expressed as

βFani/V =
∑

i=L,P

ρi

∫
fi(n(r) · �) ln 4πfi(n(r) · �)drd�

+β(F1 + F2)/V, (5)

where we have the chiral component of the free energy

βF1/V = 1

2

∑
i,j=L,P

ρiρj

∫
fi(n(r1) · �1)fj (n(r2) · �2)

×βUij,1(r12)(�1 × �2 · r̂12)P1(�1 · �2)dR, (6)

and the usual nematic free energy

βF2/V = 1

2

∑
i,j=L,P

ρiρj

∫
fi(n(r1) · �1)fj (n(r2) · �2)

×βUij,2(r12)P2(�1 · �2)dR. (7)

The degree of local orientational order for a given
fi(n(r) · �) can be specified by the second rank order parame-
ter tensor Q

(i)
αβ(r) of the molecule i and in general is a function
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of position:

Q
(i)
αβ(r) ≡

∫
d�fi(n(r) · �)

(
3

2
�α�β − 1

2
δαβ

)

≡
〈

3

2
�α�β − 1

2
δαβ

〉
, (8)

where �α is the Cartesian component of the molecular
orientation vector � = (sin θ cos ϕ, sin θ sin ϕ, cos θ ) at a
position r.

Using Eq. (8), the averages over �1 and �2 in Eqs. (6)
and (7) yield ∫

fi(n(r1) · �1)fj (n(r2) · �2) (9)

×(�1 × �2 · r̂12)P1(�1 · �2)d�1d�2

= 4

9
εαβγ (rα/r)Q(i)

μβ(r1)Q(j )
μγ (r2), (10)

and ∫
fi(n(r1) · �1)fj (n(r2) · �2)P2(�1 · �2)d�1d�2

= 2

3
Q

(i)
αβ(r1)Q(j )

αβ (r2), (11)

respectively, where εαβγ is Levi-Civita antisymmetric tensor
of the third rank and r ≡ |r12|.

We here assume that the Q
(j )
αβ (r2) does not change appre-

ciably over the range of the potential and can be expanded in
the Taylor series about r12:

Qαβ(r2) = Qαβ(r1) + rκ

∂Qαβ(r1)

∂rκ

+ 1

2
rκrλ

∂2Qαβ(r1)

∂rκ∂rλ

. (12)

Substituting Eq. (12) into Eqs. (10) and (11), the free en-
ergy (Eq. (6)) is given by

βF1/V = 1

2
ρ2

LCLL

∫
4

9
εαβγ Q

(L)
μβ (r1)∂αQ(L)

μγ (r1)dr1

+ρLρP CLP

∫
4

9
εαβγ Q

(L)
μβ (r1)∂αQ(P )

μγ (r1)dr1,

(13)

and the free energy (Eq. (7)) is given by

βF2/V = 1

2
ρ2

LALL

∫
2

3
Q

(L)
αβ (r1)Q(L)

αβ (r1)dr1

+ρLρP ALP

∫
2

3
Q

(L)
αβ (r1)Q(P )

αβ (r1)dr1

+1

2
ρ2

LBLL

∫
1

3
Q

(L)
αβ (r1)∂μ∂μQ

(L)
αβ (r1)dr1

+ρLρP BLP

∫
1

3
Q

(L)
αβ (r1)∂μ∂μQ

(P )
αβ (r1)dr1,

(14)

where we define

Aij =
∫

βUij,2(r12)dr12, (15)

Bij =
∫

βUij,2(r12)z2dr12, (16)

Cij =
∫

βUij,1(r12)
z2

r
dr12, (17)

and we have assumed that the distance between the centers
of two particles is small z along the z axis. This expression is
now in the form of the integral of a potential energy. We here
employ a simple square well interaction potential with a short
range d0, which is the order of the particle size.40 With this
approximation we can take

Aij = −vij νij , (18)

Bij = −1

3
vij νij d

2
0 , (19)

Cij = −vij cij d0, (20)

where vij is the average volume between the particles i and j
in random orientations: vLL = (π/4)L2D and vLP = (π/4)
LD2nP . The interaction parameter νLL(≡−ULL, 2/
kBT > 0) corresponds to the orientational-dependent
(Maier-Saupe) interaction parameter between liquid crystal
molecules for a nematic phase and νLP( ≡ −ULP, 2/kBT) is the
nematic interaction parameter between a liquid crystal and a
polymer. When νLP > 0, it means the attractive interaction
between a liquid crystal and a polymer chain. The chiral
interaction parameter cLL( ≡ −ULL, 1/kBT > 0) corresponds
to the strength of the chirality between cholesteric liquid
crystal molecules and cLP( ≡ −ULP, 1/kBT) is that between
a liquid crystal and a polymer. The physico-chemical origin
of the nematic interaction νLP comes from a straightening of
polymer chains due to the anisotropic coupling with liquid
crystals. When a polymer chain is flexible, the strength of the
orientational-dependent interaction is weak and we can take
νLP = 0. On the other hand, for a semiflexible polymer chain,
the value of νLP can have a finite value. The larger νLP value
implies that the nematic phase tends to be more stable in the
mixed state than in their pure phase.

In order to calculate the distortion free energy due to the
spatial variation of the director in a cholesteric phase, we as-
sume that the director is uniformly twisted along z axis with
pitch p = 2π /q:

n(r) = (cos qz, sin qz, 0), (21)

and the tensor order parameter can be expressed as52

Q
(i)
αβ(r1) = Si

(
3

2
nα(r1)nβ(r1) − 1

2
δαβ

)
, (22)

where Si is the scalar orientational order parameter of the par-
ticle i( = L, P):

Si =
∫

P2(n(r) · �)fi(n(r) · �)d�. (23)
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The scalar order parameters do not depend on r in our mean
field approximations.

Substituting Eqs. (21) and (22) into Eqs. (13) and (14),
we obtain the anisotropic free energy:

Fani = Fnem + Fdis, (24)

where we have separated the anisotropic free energy into two
parts. One is the nematic free energy of Maier-Saupe type:50

a3βFnem/V =
∑

i=L,P

φi

ni

∫
fi(n(r) · �) ln 4πfi(n(r) · �)drd�

−1

2
φ2

LS2
LνLL − φLφP SLSP νLP , (25)

and the other is the distortion free energy due to the spatial
variation of the director:

a3βFdis/V = −1

2
φ2

LS2
LgLL(Q) − φLφP SLSP gLP (Q),

(26)

where we define Q ≡ qd0,

gLL(Q) ≡ −1

2
νLLQ2 + cLLQ, (27)

and

gLP (Q) ≡ −1

2
νLP Q2 + cLP Q. (28)

B. Distribution functions in an equilibrium state

The orientational distribution function fL(n(r) · �) of the
liquid crystals and fP (n(r) · �) of the polymer chains are de-
termined by the anisotropic free energy (Eq. (24)) with respect
to these functions: (δFani/δfi) = 0, under the normalization
condition: ∫

fi(n(r) · �)d� = 1. (29)

We then obtain

fL(x) = 1

ZL

exp[nL(φLSLGLL(Q) + φP SP GLP (Q))P2(x)]

(30)

and

fP (x) = 1

ZP

exp[nP φP SP GLP (Q)P2(x)], (31)

where we define

GLL(Q) ≡ νLL + gLL(Q) (32)

and

GLP (Q) ≡ νLP + gLP (Q). (33)

The constants ZL and ZP are determined by the normalization
condition as ZL = 4π I0[Q] and ZP = 4πJ0[Q], respectively.
The functions Im and Jm are defined as

Im[Q] ≡
∫ 1

0
[P2(x)]m exp[nL(φLSLGLL(Q)

+φP SP GLP (Q))P2(x)]dx (34)

and

Jm[Q] ≡
∫ 1

0
[P2(x)]m exp[nP φP SP GLP (Q)P2(x)]dx,

(35)

respectively, where m = 0, 1, 2. . . .
Substituting Eqs. (30) and (31) into (23), the scalar ori-

entational order parameters SL and SP can be determined by
the two coupled- self-consistency equations:

SL = I1[Q]/I0[Q], (36)

SP = J1[Q]/J0[Q]. (37)

Using the distribution functions, Eqs. (30) and (31), the
anisotropic free energy (Eq. (5) or Eq. (24)) for the cholesteric
phase is given by

a3βFani/V = 1

2
φ2

LS2
LGLL(Q) + φLφP SLSP GLP (Q)

−φP

nP

ln J0[Q] − φL

nL

ln I0[Q]. (38)

When Q = 0, Eq. (38) results in the nematic free energy.22, 25

The chemical potential of a liquid crystal molecule is
given by

βμL = β(∂F/∂NL)NP

= nL

[
1

nL

ln φL +
(

1

nL

− 1

nP

)
φP + χφ2

P

+1

2
S2

Lφ2
LGLL(Q) + SLSP φLφP GLP (Q)

− 1

nL

ln I0[Q]

]
, (39)

and that of a polymer:

βμP = β(∂F/∂NP )NL

= nP

[
1

nP

ln φP +
(

1

nP

− 1

nL

)
φL + χφ2

L

+1

2
S2

Lφ2
LGLL(Q) + SLSP φLφP GLP (Q)

− 1

nP

ln J0[Q]

]
. (40)

C. Cholesteric pitch and twist elastic constant

The cholesteric pitch p∗(= 2πd0/Q∗) in an equilibrium
state can be derived by minimizing the anisotropic free energy
Fani (Eq. (38)) with respect to Q:

Q∗ = Q0

[
1 − [

1 − 2εx

(
SP

SL

)]
φP

1 − [
1 − 2εn

(
SP

SL

)]
φP

]
, (41)

where we define Q0 ≡ cLL/νLL, εn ≡ νLP/νLL, and
εx ≡ cLP/cLL. We have Q∗ = 0 for SL = 0. The equilibrium
value Q∗ of the pitch depends on two orientational order pa-
rameters in the form SP/SL, hence it is temperature and con-
centration dependent. The cholesteric pitch p∗ can be given by
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p∗/p0 = Q0/Q∗, where p0 is the pitch of the pure liquid crys-
tal. When φP = 0, the pitch of the pure liquid crystal is given
by p0 = 2πd0/Q0 and a constant, or temperature independent.
By solving the coupled equations (36) and (37), using Q∗, we
can obtain the values of two orientational order parameters SL

and SP as a function of temperature and concentration.
When φP � 1, we obtain

Q∗ � Q0

[
1 + 2(εx − εn)

SP

SL

φP · · ·
]
. (42)

When εx > εn (εx < εn), the pitch p(∝1/Q) decreases (in-
creases) with increasing φP. The value of (εx − εn)SP/SL

corresponds to the “microscopic twisting power” of the so-
lute, depending on the nature of both solute and solvent
molecules.3 The value of the cholesteric pitch also strongly
depends on the chiral twisting power εx between a polymer
and a liquid crystal. Using Eq. (41), the distortion free energy
(Eq. (26)) yields

a3βFdis/V = 1

2
νLLφLSL

(
1

2
φLSL + εnφP SP

)

×[(Q − Q∗)2 − Q∗2]. (43)

When Q = Q∗ the total free energy has a minimum and the
cholesteric phase with Q = Q∗ is always more stable than the
nematic phase with Q = 0. There is no nematic-cholesteric
phase transitions in our model.

The term in the distortion free energy (Eq. (26)) propor-
tional to Q2 can be identified as a bare twist elastic constant
(K22) and then we obtain

(a/kBT )K22 = νLL

2
S2

L

[
φ2

L + εn

(
SP

SL

)
φLφP

]
. (44)

When φP = 0, the twist elastic constant of the pure liquid
crystal molecule is given by52

(a/kBT )K◦
22 = 1

2
νLLS2

L. (45)

In Section III, we show some numerical results of the
physical properties of the cholesteric phase.

III. MIXTURES OF A CHOLESTERIC LIQUID CRYSTAL
AND A POLYMER

In our numerical calculations we have three interac-
tion parameters related to cholesteric ordering: the chiral in-
teraction parameter εx, the nematic interaction εn between
a polymer and a liquid crystal, and the pitch Q0(≡cLL/
νLL = 2πd0/p0) of the pure liquid crystal. We can estimate
as Q0 � 0.01 for the typical pitch p0 = 3000 Å and the length
d0 = 30 Å of a liquid crystal molecule. We here define the
reduced temperature

τ ≡ T/TCI = 4.55/(nLνLL), (46)

where TCI shows the cholesteric-isotropic phase transition
(CIT) temperature of a pure liquid crystal. The numerical pa-
rameters are given as a function of the temperature τ : cLL

= Q0νLL, cLP = εxcLL, and νLP = εnνLL.

0.85 0.90 0.95 1.00 1.05 1.10

0.8

0.9

1.0

1.1
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τ(=T/TCI)

p*
/p

0

εx=0.3

εx=0.6

εx=0.1φ P=0.1

εx=0.2

FIG. 1. Cholesteric pitch p∗/p0(= Q0/Q∗) plotted against temperature for
various values of εx for εn = 0.3 and φP = 0.1. The pitch strongly depends
on the chiral interaction parameter εx.

A. Cholesteric pitch depending on concentration
and temperature

We first show the pitch of a cholesteric phase. Figure 1
shows the cholesteric pitch p∗/p0, Eq. (41), plotted against the
temperature τ at φP = 0.1 for εn = 0.3, nL = 2, and nP = 50.
The chiral interaction parameter εx is changed. At the dotted
line the CIT takes place and the pitch becomes infinity. De-
pending on the chiral interaction parameter εx, we find three
types of temperature-dependent pitch. As shown in Eq. (42),
the value of Q∗ decreases with increasing SP/SL for εx < εn at
a constant φP. For a weak chiral coupling (εx = 0.1) between a
polymer and a liquid crystal, the pitch increases with increas-
ing temperature and disappears at the CIT. On the other hand,
for a strong chiral coupling, or εx > εn (εx = 0.6), the pitch
decreases with increasing temperature. On decreasing temper-
ature, the pitch becomes almost independent of temperature.
When εx = εn (εx = 0.3), the pitch is a constant.

Figure 2 shows the orientational order parameters (left)
and the ratio (SP/SL) (right), plotted against temperature with
εn = 0.3 and φP = 0.1. We have the first-order CIT at
τ � 1.04, where the orientational order parameters jump and
increase with decreasing temperature. The value of the ratio
SP/SL decreases with decreasing temperature and becomes al-
most a constant. As shown in Eq. (42), the temperature de-
pendence of the pitch strongly depends on the sign of εx − εn

and SP/SL.
Figure 3 shows the cholesteric pitch p∗/p0, Eq. (41),

plotted against the polymer concentration at τ = 0.95 for

0.85 0.90 0.95 1.00 1.05 1.10
0.0

0.2

0.4

0.6

0.8

1.0

0.0

2.0

4.0

6.0SP

SL

O
rd

er
 p

ar
am

et
er

s

τ(=T/TCI)

φ P=0.1

SP/SL

S
P /S

L

FIG. 2. Orientational order parameters (left) and the ratio (SP/SL) (right),
plotted against temperature with εn = 0.3 and φP = 0.1. The order parame-
ters decrease with increasing temperature and we have the first-order CIT at
τ � 1.04.
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FIG. 3. Cholesteric pitch p∗/p0( = Q0/Q∗) plotted against the polymer con-
centration for the various values of εx with εn = 0.3 and τ = 0.95.

εn = 0.3, nL = 2, and nP = 50. At the dotted line the CIT
takes place. When εx > εn, the pitch decreases with increas-
ing φP, because of the strong chiral coupling between a poly-
mer and a liquid crystal. When the chiral coupling parameter
is weak, εx < εn, the helical pitch increases with φP and un-
winds at the CIT. These numerical results are consistent with
the experimental results.2, 8, 11–13 The pitch strongly depends
on the chiral interaction parameter εx between a polymer and
a liquid crystal.

B. Phase separations

In this subsection we show the phase behaviors of mix-
tures of a polymer and a cholesteric liquid crystal. The equi-
librium free energy is calculated by substituting Q∗ into
Eq. (38). The coexistence (binodal) curve can be calculated
from the standard common-tangent construction in the free
energy (Eq. (1)) to find coexisting phases of different con-
centrations. We here take χ /νLL = 0.1. The binodal curves
are also obtained by solving the two-phase coexistence condi-
tions: the chemical potentials μL and μP of coexisting phases
have to be equal to each other.

Figure 4 shows the phase diagram on the temperature-
concentration plane for εn = 0.3, εx = 0.2, nL = 2, and
nP = 10. Solid curves show the binodal line and the dotted
line shows the CIT. The CIT temperature decreases with in-
creasing polymer concentrations because of dilution. Below
τ < 1, we have the phase separation (Ch+I) between a
cholesteric (Ch) and an isotropic (I) phase. The CIT line is
hidden inside the binodal lines. With decreasing temperature,
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FIG. 4. Phase diagram on the temperature-concentration plane for εn = 0.3,
εx = 0.2, nL = 2, and nP = 10. Solid curves show the binodal line and the
dotted line shows the cholesteric-isotropic phase transition.
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FIG. 5. Orientational order parameters SP, SL, and the ratio SP/SL, plotted
against the polymer concentration φP for τ = 0.9 in Fig. 4.

the width of the two-phase region becomes wide. At the low
polymer concentrations, we have the stable cholesteric phase.

Figure 5 shows the orientational order parameters SP of
the polymer and SL of the liquid crystal, plotted against the
polymer concentration at τ = 0.9 in Fig. 4. The orienta-
tional order parameters decrease with increasing the concen-
tration of polymer chains and we have the first-order CIT at
φP � 0.19. The orientational order of the polymer is higher
than that of the liquid crystal, because of the coupling be-
tween the polymer and liquid crystal. For a weak coupling,
or smaller values of εn, the orientational order SP has smaller
values than that of SL and the binodal curve of the cholesteric
phase in Fig. 4 shifts to the lower concentrations.

Figure 6 shows the cholesteric pitch p∗/p0, Eq. (41), plot-
ted against the volume fraction of polymers for various tem-
peratures in Fig. 4. As shown in Eq. (42), the value of Q∗ de-
creases with increasing φP for εx < εn, or the pitch increases
with increasing φP. Figure 7 shows the twist elastic constant
K22 plotted against the volume fraction of polymers for vari-
ous temperatures. The elastic constant decreases with the in-
creasing polymer concentration. The value of K22 increases
with decreasing temperature at a fixed φp. When (a/kBT)K22

= 0.5, by taking kBT � 1 kcal/mol and a � 15 Å, we can esti-
mate K22 ∼ 10−6 dyn, which is the correct order of magnitude
of the elastic constant.3 Our numerical results are consistent
with the experimental observations.

C. Polymer-induced cholesteric phases

When the nematic coupling between a polymer and a
liquid crystal is strong, the phase behaviors are drastically
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FIG. 6. Cholesteric pitch p∗/p0, Eq. (41), plotted against the volume fraction
of polymers for various temperatures in Fig. 4.
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FIG. 7. Twist elastic constant K22 plotted against the volume fraction of
polymers for various temperatures in Fig. 4.

changed. On increasing the molecular weight of a poly-
mer chain, this anisotropic coupling becomes dominant. The
anisotropic coupling between a polymer and a liquid crys-
tal has been widely studied in nematic and smectic A phase
in polymer and liquid crystal mixtures. It has been recog-
nized that smectic A and nematic phases can be induced
in a nematic liquid crystal mixture by strong mesogenic
interactions.26–29

Figure 8 shows the phase diagram on the temperature-
concentration plane for nP = 20. Solid curves show the bin-
odal line and the dotted line shows the CIT. We have the
phase separation (Ch+I). On increasing the molecular weight
of the polymer, the anisotropic coupling between a polymer
and a liquid crystal becomes strong and the CIT line shifts
to higher temperatures and the binodal line of the cholesteric
phase shifts to higher concentrations, compared to nP = 10
(Fig. 4).

Figure 9 shows the phase diagram on the temperature-
concentration plane for nP = 50. Solid curves show the bin-
odal line and the dotted line shows the CIT. We find that
the CIT temperature increases from τ = 1 with increasing
φP and has a maximum as a function of φP. The cholesteric
phase is stabilized by the anisotropic coupling between a
polymer chain and a liquid crystal.53 The binodal lines of
the phase separation (Ch+I) merge, or exhibit azeotropes, at
which the two equilibrium isotropic and cholesteric phases
have the same composition, while the cholesteric-isotropic
phase separation (Ch+I) appears at high polymer concen-
trations. At the lower temperatures of the polymer induced-
cholesteric phase, we have the phase separation between two
cholesteric phases (Ch1+Ch2) with different polymer concen-
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FIG. 8. Phase diagram on the temperature-concentration plane for εn = 0.3,
εx = 0.2, nL = 2, and nP = 20. Solid curves show the binodal line and the
dotted line shows the cholesteric-isotropic phase transition.
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FIG. 9. Phase diagram on the temperature-concentration plane for εn = 0.3,
εx = 0.2, nL = 2, and nP = 50. Solid curves show the binodal line and
the dotted line shows the cholesteric-isotropic phase transition. The strong
anisotropic coupling between a polymer chain and a liquid crystal induces
the cholesteric phase at high temperatures.

trations. In this figure we have calculated with εn = 0.3.
When the nematic interaction is weak, for example, εn

= 0.1, such induced-cholesteric phase does not appear and we
only have the cholesteric-isotropic phase separations, where
the CIT temperature decreases from τ = 1 with increasing
φP, as shown in Fig. 4.

Figure 10 shows the cholesteric pitch p∗/p0, Eq. (41),
plotted against the temperature for various values of the poly-
mer concentration φP in Fig. 9. As shown in Eq. (42), for
εx < εn, the pitch increases with increasing φP. Figure 11
shows the twist elastic constant K22 plotted against the volume
fraction φP for various temperatures in Fig. 9. At low temper-
atures (τ < 1), the value of K22 decreases with the increasing
polymer concentration φP. This is similar to Fig. 7. At high
temperatures (τ > 1), however, the K22 has a maximum as
a function of φP due to the appearance of polymer-induced
cholesteric ordering.

In our theory, there are two important molecular param-
eters to understand cholesteric behaviors in the liquid crys-
tal/polymer mixtures: one is the nematic interaction εn and
the other is the chirality parameter εx between a polymer and
a liquid crystal. The chiral interaction εx depends on the he-
lical configuration between a polymer and a liquid crystal.
The phase diagrams including the CIT and binodal curves are
almost independent of the chiral interaction parameter εx, be-
cause the contribution of the chirality in the free energy is
small (order of Q(� 1)), although, the pitch strongly depends
on εx. The larger values of εx correspond to the smaller pitch,
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FIG. 10. Cholesteric pitch p∗/p0, Eq. (41), plotted against the temperature
for various of the polymer concentration φP in Fig. 9
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where the pitch decreases with increasing temperature and
polymer concentration.

IV. MIXTURES OF A NEMATIC LIQUID CRYSTAL
AND A CHIRAL DOPANT

Our theory presented in Sec. III can describe mixtures
of a non-chiral nematic liquid crystal (i = L) and a chiral
dopant (i = P). In this section we focus on the pitch of the
mixtures. It is well known that when a non-chiral nematic liq-
uid crystal phase is doped with a low concentration of a chi-
ral molecule, a chiral nematic phase is formed with a helical
pitch, which is inversely proportional to the concentration of
the chiral dopant.3 This chiral nematic phase is induced by
a chiral coupling between the liquid crystal and dopant. In
Sec. III, we have considered the chiral coupling between two
constituent molecules and then our theory can give the under-
lying physics of the chiral coupling.

For non-chiral nematic liquid crystal molecules (i = L),
we can take ULL, 1 = 0 in Eq. (4), or cLL = 0 in Eq. (27). Then
the cholesteric pitch (or the wave number Q of the cholesteric
pitch) is given as a function of the volume fraction φP of the
chiral dopant:

Q = 2εnαx

(
SP

SL

)
φP

1 − [
1 − 2εn

(
SP

SL

)]
φP

, (47)

where αx(≡ cLP/νLP) shows the strength of the chirality of
dopants (εnαx = cLP/νLL).

When φP � 1, we find

Q/φP � HT P + HT P

(
1 − HT P

αx

)
φP + · · · , (48)

where

HT P ≡ 2εnαx

SP

SL

(49)

is called the helical twisting power of a chiral dopant.1, 3 The
larger values of HTP correspond to the smaller pitch. For HTP

> 0, the wave number Q of the twist pitch linearly increases
with increasing φP at dilute solutions, which is consistent with
the experiments.1, 53–55 The temperature and concentration de-
pendences of HTP are given through the ratio SP/SL.

Figure 12 shows the ratio SP/SL of two orientational order
parameters plotted against the reduced-temperature for vari-
ous values of εn with φP = 0.01. The other parameters are
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FIG. 12. Ratio SP/SL of two orientational order parameters plotted against
the reduced-temperature for various values of εn with φP = 0.01.

the same with Fig. 4. We find that the temperature depen-
dence of HTP has three types. When εn = 0.3 and 0.4, or a
strong coupling between a nematic liquid crystal and a chiral
dopant, the value of SP/SL is larger than unity and increases
with increasing temperature because of the anisotropic cou-
pling between a liquid crystal and a chiral dopant. The value
of HTP increases with increasing temperature. On the other
hand, for a weak coupling εn = 0.1 and 0.15, the ratio of
two order parameters decreases with increasing temperature.
In this case, the polymer chains are weakly oriented due to
the weak anisotropic coupling with liquid crystal molecules.
The HTP decreases with increasing temperature. When
εn = 0.2, the value SP/SL is independent of temperature and
the helical twisting power becomes a constant. When SP/SL

� 1, αx = 1, and d0 = 0.004 μm, we can estimate the heli-
cal twisting power HTP = HTP/d0 � 100 (μm−1), which is
consistent with the magnitude of the helical twisting power in
nematic liquid crystals K15 induced by TADDOL dopants.56

The temperature dependence of the helical twisting power is
determined by the nematic interaction parameter εn between
a liquid crystal and a chiral dopant.

Using the twist elastic constant (Eq. (45)) of the pure ne-
matic liquid crystal, we find that the helical twisting power
can be expressed as

HT P = cLP SP

aK◦
22/kBT

� cLP

aK◦
22/kBT

, (50)

for SP � 1. The helical twisting power is inversely propor-
tional to the twist elastic constant K◦

22
57–60 and the sign of HTP

depends on the values of cLP and SP. Note that the positive
values of cLP correspond to an attractive chiral interaction be-
tween a nematic liquid crystal and a dopant. The sophisticated
calculations of HTP have been studied by many authors.57–61

Following the simulation of Allen,58 the parameter cLP in our
model corresponds to the difference �μ in the chemical po-
tentials between mirror image forms of a dopant, where �μ

changes the sign as a function of twist angle between the
symmetry axes of two ellipsoids. Due to the surface chiral-
ity model developed by Ferrarini et al., the term cLPSP can
correspond to the chirality order parameter, which describes
the coupling between the chiral surface of the molecule and
its orientational ordering.60

As shown in Fig. 13, when Q/φP is plotted against φP,
using Eq. (48), the intercept corresponds to HTP and the slope
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FIG. 13. Wave number Q/φP plotted against φP for HTP > 0 (see Eq. (48)).
When HTP < 0, the slope becomes negative.

(�) shows the value

� = HT P

(
1 − HT P

αx

)
, (51)

yielding

αx = HT P

1 − �/HT P

. (52)

Using Eq. (49), we have

εn = HT P

2αx(SP /SL)
� HT P

2αx

. (53)

for SP/SL � 1. Then if we experimentally observe HTP and �,
the strength of chirality cLP (or αx) and the nematic interaction
εn can be determined from Eqs. (52) or (50) and (53). When
� � 0, we have αx � HTP and the value of εn is of the order
of unity.

V. SUMMARY

We have presented a mean field theory to describe phase
behaviors in mixtures of a polymer and a cholesteric liquid
crystal. Our main original contribution is to taking into ac-
count the chiral coupling between a polymer and a liquid
crystal. As the results, we obtain analytical expressions of the
pitch of the cholesteric phase and the twist elastic constant as
a function of orientational order parameters of a polymer and
a liquid crystal.

The pitch of the cholesteric phase depends on the chi-
ral interaction parameter εx and the nematic parameter εn

and is given as a function of temperature and concentration
through the ratio of orientational order parameters in the form
SP/SL. When εx > εn (εx < εn), the pitch decreases (increases)
with increasing the polymer concentration and temperature.
We also find isotropic-cholesteric and cholesteric-cholesteric
phase separations on the temperature-concentration plane. We
demonstrate that a strong coupling between a polymer and a
liquid crystal can stabilize cholesteric phases.

Our theory can apply to mixtures of a non-chiral nematic
liquid crystal and a chiral dopant. We have derived the pitch
as a function of the concentration of chiral dopants and the
orientational order parameters, and the chiral interaction pa-
rameters. We have shown that these chiral interaction param-
eters can be determined by experiments. We find that the HTP
is given as a function of a ratio of orientational order param-
eters in the form SP/SL, which depends on temperature and
concentration. For a strong (weak) nematic coupling between

a nematic liquid crystal and a chiral molecule, the HTP in-
creases (decreases) with increasing temperature. Our theory
is consistent with some experimental observations.

In this paper we have considered the equilibrium prop-
erties of cholesteric phases in mixtures of a liquid crystal
and a polymer. The kinetics of the phase ordering process
is also important. Luca and Rey have used a model based
on the Landau-de Gennes theory to understand the structure
formation process of the twisted polywood architecture ubiq-
uitously found in biological fibrous composites.32, 33 They
found that the phase ordering process is slowed by an increase
in chirality, linked to a biaxiality. We hope that our theory will
be applied to understand the kinetics of phase separations in-
cluding cholesteric phases in mixtures of a liquid crystal and
a polymer.

We here do not take into account biaxiality42, 62 of a
cholesteric phase and also neglect excluded volume interac-
tions, which are important for long rodlike molecules.51 This
entropic contribution affects the temperature dependence of a
cholesteric pitch.43 The theory can be extended to nematic
and cholesteric liquid crystal mixtures, binary mixtures of
cholesteric liquid crystals, cholesteric liquid crystalline poly-
mers, and lyotropic cholesteric phases.
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