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A theory is introduced to describe self-assembly of liquid crystalline AB diblock copolymers, con-
sisting of a homopolymer (A) and a side-chain liquid crystalline polymer (B). We derive the free en-
ergy of the liquid crystalline micellar solutions and examine the equilibrium solution properties: crit-
ical micelle concentration (CMC), nematic-isotropic phase transition (NIT) of the rigid side-chains
inside the micelle core, and phase separations. It is shown that there is a critical micelle size below
which the NIT becomes continuous due to a packing effect. We also find re-entrant micellizations
near the NIT temperature. The phase diagrams, including binodal, spinodal, CMC, and NIT curves
are also examined on the temperature-concentration plane. © 2013 American Institute of Physics.
[http://dx.doi.org/10.1063/1.4774386]

I. INTRODUCTION

Self-assembled polymer micelles have been studied in-
tensively because of their potential applications in fields such
as drug delivery and biomaterial science (see reviews1, 2).
One of the most used methods of forming polymer micelles
is self-assembling diblock copolymers in a selective sol-
vent for one of the two blocks. It has been reported coil-
coil block copolymers,1–3 polymeric surfactants,4–6 worm-
like micelles,7, 8 and rod-coil block copolymers with rigid
blocks.9–13 The stiff or rigid segments as one of the blocks
results in liquid crystalline ordering.14–18 Diblock copoly-
mers with side-chain liquid crystalline polymers and lyotropic
chromonic liquid crystals19, 20 with a plate-like or disk-like
central core have also attracted more attention in the recent
years.21 In these systems, it is important to understand the co-
operative phenomena between self-assembly and liquid crys-
talline ordering.22

Block copolymers that join a random-coil polymer with
a side-chain liquid crystalline block can self-assemble into a
variety of morphologies: spheres, cylinders, and lamellae, and
form nematic and smectic phases.23–28 The important feature
is the interplay between two levels of order and self-assembly:
the liquid crystalline ordering of rigid side-chains (mesogens)
inside the micelle core and of aggregates due to microphase
separations.21 Recent experiments have showed that efficient
and stable drug incorporation in polymeric micelles is fea-
sible by the use of side-chain liquid crystalline polymers.26

Introduction of the liquid crystalline molecules to the inte-
rior of the polymeric micelle arrows for the phase transition
of the micelle inner core between the nematic phase and the
solid crystalline phase. Compare to the rigid solid state of
the core, the highly fluid character of the liquid crystalline
phase enhances incorporation of hydrophobic drugs into the
core. However, such liquid crystalline micelles, in which the

a)Electronic mail: matuyama@bio.kyutech.ac.jp. URL: http://iona.bio.
kyutech.ac.jp/~aki/.

reversible self-assembled aggregates show liquid crystalline
phases, are not well-understood class of soft matter.

In this paper, we theoretically study micellar formations
of diblock copolymers, consisting of a homopolymer (A) and
a side-chain liquid crystalline polymer (B) (see Fig. 1). The
spherical micelles are formed by the interaction between the
core-forming block (B) and solvent. Depending on the ther-
modynamic variables, nematic ordering can take place in the
core of micelles. We here focus spherical micelles and neglect
cylinders and lamellae phases. Based on the Flory-Huggins
theory for polydisperse polymer solutions,29 the Maier-Saupe
theory for nematic ordering,30 and the Tanaka theory for as-
sociating polymer solutions,31, 32 we derive the free energy
of the liquid crystalline micellar solutions. From the equi-
librium conditions for molecular associations, we derive the
size-distribution of the micelles of diblock copolymers and
calculate orientational order of the core of the micelles, de-
pending on the size of the micelles. The equilibrium solution
properties, including critical micelle concentration (CMC),
nematic-isotropic phase transition (NIT), and phase separa-
tions, are discussed. We find the re-entrant micellization near
NIT temperature and various phase separations.

II. FREE ENERGY OF LIQUID CRYSTALLINE
MICELLAR SOLUTIONS

We consider a binary mixture of a AB block copolymer
and a solvent molecule. Each block copolymer chain consists
of a linear homopolymer (A) and a side-chain liquid crys-
talline polymer (B). Let nA be the number of segments on the
polymer A and nB the number of segments on the polymer
B. The side-chain liquid crystalline polymer (B) consists of
a flexible backbone chain and rigid side-chains (mesogens).
The repeating unit on the side-chain liquid crystalline poly-
mer is given by a backbone chain of the number nb of the seg-
ments and a mesogen with the axial ratio nm(= L/d), where
L is the length and d is the diameter of the mesogen. The to-
tal number of segments on the side-chain liquid crystalline
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FIG. 1. Liquid crystalline micelle (r-cluster) of AB diblock copolymers,
consisted of homopolymers (A) and side-chain liquid crystalline polymers
(B), where r is the number of the AB copolymer in the spherical micelle. The
core of the micelle has side-chain liquid crystalline polymers (B).

polymer is given by nB = (nm + nb)t, where t is the num-
ber of a repeating unit. Then, the total number of segments
on the AB copolymer is given by n = nA + nB. We here take
that the solvent molecule is a good solvent for the polymer A
and is a poor solvent for the polymer B. In a thermal equi-
librium, the AB block copolymers aggregate into micelles,
depending on temperature and concentration. We here take
into account spherical micelles and neglect a cylindrical shape
and the other shape of the aggregates. In the following, we
call the spherical micelles as r-clusters, where r(= 1, 2, . . . ,
∞) is the number of the AB copolymer in the cluster (see
Fig. 1). We here call the block copolymers of r = 1 “unimers”
to avoid confusion with monomers. To derive the population
of such clusters, we consider the thermodynamics of the mi-
cellar solution.

Let a3 be the volume of an unit segment (a = d), N0 the
number of the solvent molecules, and Nr the number of the r-
clusters. The total number of segments in our system is given
by

Nt = N0 + n

∞∑
r=1

rNr, (1)

where we have taken that the number of segments of the sol-
vent molecule is unity. The volume of the system is given by
V = a3Nt .

The volume fraction of the r-cluster is given by

φr = nrNr/Nt (2)

the volume fraction of the diblock copolymer AB is given by

φ =
∞∑

r=1

φr (3)

and the volume fraction of the solvent molecules is
φ0 = 1 − φ. The volume fraction of the polymer A is given
by

φA = nA

∞∑
r=1

rNr/Nt = (nA/n)φ, (4)

and that of the polymer B is

φB = nB

∞∑
r=1

rNr/Nt = (nB/n)φ. (5)

The free energy of the micellar solution can be given by32

F = Fmcl + Fmix + Fnem. (6)

The first term Fmcl corresponds to the free energy of the mi-
celles in the reference state where the micelles and the solvent
molecules are separately prepared and is given by

Fmcl = N0μ
◦
0 +

∞∑
r=1

Nrμ
◦
r , (7)

where μ◦
r is the standard chemical potential of the single iso-

lated r-cluster and μ◦
0 is that of the solvent.

The second term shows the free energy change re-
quired in the process of mixing the clusters with the solvent
molecules. According to the Flory lattice theory for polydis-
perse polymer solutions, the free energy of mixing is given
by29

βFmix = Nt

[
φ0 ln φ0 +

∞∑
r=1

φr

nr
ln φr

+χA0φAφ0 + χB0φBφ0 + χABφAφB

]
, (8)

where β = 1/kBT: T is the absolute temperature and kB is the
Boltzmann constant, χ ij is the Flory-Huggins interaction pa-
rameter between the i and j components. The number of the
contact between the B segment and solvent molecule may
change upon molecular association and the term of χB0 in
Eq. (8) may be modified. We here assume, however, that
the same form with Flory’s model remains varied after
association.

The third term in Eq. (6) shows the nematic free energy
for aggregates and is given by

Fnem =
∞∑

r=1

NrFnem,r , (9)

where the Fnem,r is the nematic free energy for the r-cluster.
The chemical potential of the solvent molecule is given

by

βμ0 =
(

∂F

∂N0

)
Ni (i �=0)

= βμ◦
0 + ln(1 − φ) +

(
1 − 1

n〈r〉
)

φ

+
(nA

n
χA0 + nB

n
χB0 − nAnB

n2
χAB

)
φ2 (10)
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and the chemical potential of the r-cluster is given by

βμr =
(

∂F

∂Nr

)
Ni (i �=r)

= βμ◦
r + ln φr + 1 − nr + nr

(
1 − 1

n〈r〉
)

φ

+ r

[
nAχA0(1 − φ)2 + nBχB0(1 − φ)2

+ nAnB

n
χAB(2 − φ)φ

]
+ Fnem,r , (11)

where

〈r〉 =
∞∑

r=1

rNr/

∞∑
r=1

Nr

= φ/

∞∑
r=1

(φr/r) (12)

is the average cluster size of the micelles.
To find the equilibrium distribution of clusters, we im-

pose the multiple equilibrium conditions for r-clusters given
by32

μr = rμ1. (13)

Substituting Eqs. (11) into (13), we obtain the volume fraction
of the r-clusters:

φr = Krφ
r
1 (14)

and the association constant is given by

Kr = exp[r − 1 − �r − �nem,r ], (15)

where

�r ≡ β(μ◦
r − rμ◦

1) (16)

is the isotropic free energy change and

�nem,r ≡ β(Fnem,r − rFnem,1) (17)

is the nematic free energy change due to the formation of a
r-cluster. In Sec. III, we derive the free energy changes for the
formation of the r-cluster.

III. FREE ENERGY OF LIQUID
CRYSTALLINE MICELLES

In this section, we derive the free energy changes �r and
�nem,r for the formation of the r-cluster.

A. Isotropic free energy change �r for a r-cluster

We first consider the isotropic free energy change �r.
A spherical aggregate with r copolymers has a radius
R = (3rv/4π )1/3, where v is the volume of a side-chain liq-
uid crystalline polymer (B) in the core of the r-cluster and is
given by v = a3nB . The chemical potential of the r-cluster is
given by33

μ◦
r = rμ◦

∞ + 4πR2γ, (18)

where μ◦
∞ is the bulk free energy per copolymer and γ is the

interfacial tension. Then Eq. (16) is given by

�r = αr(r−1/3 − 1), (19)

where

α ≡ 4π

(
3nB

4π

)1/3

(a2βγ ) (20)

is the numerical parameter related to the interfacial tension
and depends on temperature.

B. Nematic free energy change �nem,r for a r-cluster

We here consider the nematic free energy change �nem,r

due to the formation of the r-cluster. Inside the core of the mi-
celle, the mesogens can be oriented depending on the temper-
ature and the concentration. Let xm = nm/(nm + nb) be the vol-
ume fraction of mesogens inside the core. The orientational
order parameter of mesogens inside the core of the r-cluster
is given by34

Sr =
∫

P2(cos θ )fr (θ )d�, (21)

where d� = 2πsin θdθ , P2(cos θ ) ≡ (3/2)(cos 2θ − 1/3), and
fr(θ ) is the orientational distribution function of mesogens in-
side the core of the r-cluster.

The nematic free energy of the r-cluster is given by

βFnem,r =
(

R3

a3

) [
xm

nm

∫
fr (θ ) ln 4πfr (θ )d�

−1

2
νx2

mS2
r

]
+ βFanc, (22)

where ν(≡ U0/kBT) is the orientational-dependent anisotropic
(Maier-Saupe) interaction parameter between the mesogens30

and Fanc is the anchoring free energy of the mesogens inside
the core. The value (R/a)3 = rnB, corresponds to the total
number of polymer segments inside the core. The free en-
ergy change Fanc corresponds to the anchoring free energy of
mesogens on the surface of a micelle core and is scaled as the
anchoring free energy density (fa) times a surface area (

∫
dS

� (R/a)2):35, 36

βFanc = xmβfa

∫
(n · c)2dS

= xmω
1

3
(2Sr + 1)(R/a)2, (23)

where n is a local director of mesogen, c is an easy director,
and fa is the anchoring free energy of a mesogen on the core
surface. We here assume that the free energy change fa due to
micellizations mainly comes from the entropic loss (�sa < 0)
to pack a mesogen inside the core: fa = −T�sa. We here call
it “packing effects.” We then have the numerical parameter
ω(≡ −�sa/kB > 0) related to the packing entropy of meso-
gens inside the core.

The orientational distribution function fr(θ ) of the r-
cluster is determined by minimizing the free energy (22) with
respect to this function: (δFnem,r/δfr (θ ))fi (θ) = 0. We then
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obtain

fr (θ ) = 1

Zr

exp[ArP2(cos θ )], (24)

where we define

Ar ≡ nm

[
νxmSr + 2

3
ω(rnB)−1/3

]
. (25)

The value of Ar means the strength of a nematic ordering and
the larger values of ω, xm, and ν promote nematic ordering.
The first term shows the attractive interaction between meso-
gens and the second term corresponds to the packing effects
of mesogens. When r → ∞, the second term becomes zero
and the value of Ar results in the mesogens in the bulk. The
constant Zr is determined by the normalization condition for
the distribution function∫ 1

0
fr (θ )d� = 1, (26)

as

Zr = 4πI0[Ar ], (27)

where the function I0[Ar] is defined as

Iq[Ar ] ≡
∫ 1

0
[P2(cos θ )]q exp[ArP2(cos θ )]d(cos θ ) (28)

q = 0, 1, 2, . . . . Substituting Eq. (24) into (21), we ob-
tain the self-consistency equation for the orientational order
parameter Sr:

Sr = I1[Ar ]/I0[Ar ]. (29)

Substituting Eq. (24) into (22), we obtain the nematic free
energy of the r-cluster

βFnem,r = rnB

[
1

2
νx2

mS2
r − xm

nm

ln(I0[Ar ])

−1

3
ωxm(rnB)−1/3

]
(30)

and the nematic free energy change �nem,r (Eq. (17)) is given
by

�nem,r = rBr, (31)

where we define

Br ≡ nB

[
1

2
νx2

m

(
S2

r − S2
1

) − xm

nm

ln

(
I0[Ar ]

I0[A1]

)

−1

3
ωxm(nB)−1/3(r−1/3 − 1)

]
, (32)

as s function of the aggregation number r.
Substituting Eqs. (19) and (31) into (15), we obtain the

volume fraction of the r-cluster:

φr = 1

e
[φ1 exp(α + 1 − αr−1/3 − Br )]r , (33)

as a function of the volume fraction of an unimer φ1 and
the aggregation number r. The total volume fraction of the
copolymer in the system is given by Eq. (3).

IV. PHASE SEPARATIONS

In this section we derive the free energy change due
to the mixing of solvent molecules and AB copolymers
(monomers). The free energy for the mixing is given by32

�F = F − F ◦ (34)

where F is the free energy of the micellar solutions (Eq. (6))
and

F ◦ = Nt (μ
◦
0φ0 + μ◦

1φ). (35)

is the reference free energy before the mixing. According to
the Gibbs-Duhem equation, the free energy of our system is
given by

F = Nt

(
μ0φ0 +

∞∑
r=1

μr

nr
φr

)
. (36)

Using the multiple equilibrium conditions (Eq. (13)), the free
energy F is given by

F = Nt

(
μ0φ0 + μ1

n
φ
)

. (37)

Substituting Eqs. (35) and (37) into (34), we obtain

�F = Nt

(
�μ0φ0 + �μ1

n
φ

)
, (38)

where �μ0 ≡ μ0 − μ◦
0 and �μ1 ≡ μ1 − μ◦

1. Then the free
energy for the mixing is given by substituting Eqs. (10) and
(11) into (38):

β�F/Nt = φ0 ln φ0 + φ

n
ln φ1 + 1

n

(
1 − 1

〈r〉
)

φ

+χA0φAφ0 + χB0φBφ0 + χABφAφB

+φB

[
1

2
νx2

mS2
1 − xm

nm

ln(I0[A1])

−1

3
ωxm(nB)−1/3

]
, (39)

and we here define the free energy per a segment:
�f ≡ �F/Nt.

The spinodal line which separates stable and unstable re-
gions is obtained by (∂2�f/∂φ2)T = 0, or equivalently from
(∂�μ0/∂φ)T = 0.38, 39 This leads to

2

(
nA

n
χA0 + nB

n
χB0 − nAnB

n2
χAB

)
− 1

1 − φ

− 1

n〈r〉φ
[

2 − φ

〈r〉2

(
∂〈r〉
∂φ

)]
= 0. (40)

The condition for the phase separations in a thermal equi-
librium is given by μ0(φ′) = μ0(φ′′) and μr(φ′) = μr(φ′′) for r
= 1, 2, . . . , where φ′ and φ′′ are the copolymer concentrations
in lower and higher concentration phase, respectively. Using
the multiple equilibria conditions (Eq. (13)), the coexistence
curves (binodals) of the phase separations are derived by the
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coupled equations

μ0(φ′) = μ0(φ′′), (41)

μ1(φ′) = μ1(φ′′). (42)

The binodal lines can also be derived by a double tangent
method where the equilibrium concentrations fall on the same
tangent line to the free energy curve (Eq. (39)).

The osmotic pressure � is related to the solvent’s chemi-
cal potential by a3β� = −β�μ0. In the dilute concentrations,
we can expand �μ0 in power series of the volume fraction φ

and we obtain

a3β�/φ = 1

n〈r〉 +
(

1

2
− χ (χij )

)
φ + · · · , (43)

where χ (χ ij) is the coefficient of φ2 in Eq. (10). The aggrega-
tion number 〈r〉 can be measured from the intercept, plotted
against φ. In Sec. V, we show some numerical results.

V. NUMERICAL RESULTS

In our numerical calculations, we take nm = nb = 3,
t = 30, and ω = 0.3 for a typical example: nA = 100, nB

= 180. Using a temperature parameter τ , we can write ν = 1/τ
and α = α0/τ , where we put α0 = 4. On increasing α, or de-
creasing temperature, the association constant increases and
we have larger aggregates.

A. Orientational order parameters of r-clusters

By numerically solving Eq. (29), we can obtain the orien-
tation order parameter Sr of the inner core of the r-cluster as a
function of temperature. Figure 2 shows the orientational or-
der parameter Sr for the r-clusters plotted against the temper-
ature, where TNI shows the NIT temperature of the mesogens
in the bulk state. We find the critical micelle size Mc, or a crit-
ical aggregation number of copolymers, for the NIT curves.
For the large micelles with r > Mc, we have the first-order
NIT and for small micelles with r < Mc we have the continu-
ous NIT, due to the packing effect of mesogens. These results
are consistent with the recent experimental results.40 The be-
havior is the same as NIT in surface-aligned nematic films41

and the transition becomes second order at a critical thickness.
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FIG. 2. Orientation order parameter Sr of the inner core of the r-cluster as a
function of temperature. The temperature TNI is the NIT temperature of the
mesogens in the bulk state (r = ∞).
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FIG. 3. Orientational order parameter Sr as a function of u−1 for various
values of b. A critical point (closed circle) appears for bc = 0.05, where the
second-order NIT takes place.

The packing effect of the mesogens inside the small micelles
changes from the first-order NIT to the continuous one. On
decreasing the size of the micelles, the NIT temperature in-
creases and the change of the order parameter becomes con-
tinuous. In the small micelles, the mesogens inside the core
have a paranematic (or weak nematic) state with Sr �= 0, even
at high temperatures.

We here put Ar = uSr + b in Eq. (25), in which we define
the constant u(≡ nmxmν) for the anisotropic interaction term
between mesogens and b(≡ (2/3)nmω(rnB)−1/3) for the pack-
ing effects. Figure 3 shows the orientational order parameter
Sr as a function of u−1 for various values of b. When b = 0
the first-order NIT takes place at 1/u = 0.223.34, 37 We find a
critical point (closed circle) for bc = 0.05, where the second-
order NIT takes place. Then the critical micelle size for the
NIT is given by

Mc = 1

nB

(
2nmω

0.15

)3

, (44)

and increases with (nmω)3. In Fig. 2, we have Mc = 9.6. Note
that the volume per a core with the critical micelle size is
given by a3(McnB). When b < bc, or r > Mc, we have the
first-order NIT, but for b > bc, or r < Mc, the order parameter
continuously changes.

B. CMC and NIT curves

In the following, we consider only unimers (r = 1) and
micelles (r = M) with aggregation number M: φ = φ1 + φM,
because the summation of the infinite series (3) cannot nu-
merically converge. We here take the aggregation number M
= 100, in which all micelles are taken to have the same aggre-
gation number M. As shown in Fig. 2, the NIT temperature is
T/TNI � 1.06 for M = 100. Figure 4 shows the volume frac-
tions of unimers and micelles with M = 100, as a function
of the volume fraction φ of the copolymer for T/TNI = 0.84.
Below the CMC, almost the copolymer is present as unimers.
Above the CMC, as extra copolymer is added to the solution
almost goes into micelles. As shown in Fig. 2, at this temper-
ature, the mesogens inside the core of micelles and unimers
are oriented and show a nematic phase with SM � S1 � 0.7.
The value of the order parameter does not depend on the
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FIG. 4. Volume fractions of unimers (φ1) and micelles with M = 100 (φM)
as a function of the volume fraction φ of the copolymer for T/TNI = 0.84.

concentration φ, because the mesogens inside the core of mi-
celles do not interact with the mesogens on the other micelles.

Figure 5 shows the CMC curve (dashed-curve) and the
NIT line (horizontal dotted-line) on the (φ, T/TNI) plane. We
here define the NIT temperature, where the order parameter
SM of the micelle jumps. We find four different regions. The
region (1) shows that the isotropic (or paranematic) unimers
exist. In the region (2), we have the nematic unimers, in which
the core B of the unimers is in a nematic state. From the re-
gions (1) to (2), the order parameter S1 continuously increases
with decreasing temperature. In the region (3), the isotropic
micelles exist and the nematic micelles appear in the region
(4), where the core of the micelles is in a nematic state. From
the regions (3) to (4), the order parameter SM discontinu-
ously increases at the NIT temperature as decreasing temper-
ature. We also find the re-entrant micellization for 0.006 < φ

< 0.008, where the system changes form (1) → (3) → (2)
→ (4) with decreasing temperature. The order parameter S1

of the unimer sharply increases around T/TNI � 1.15, where
the isotropic micelles (3) break to nematic unimers (2) and
the CMC curve shifts to higher concentrations. The nematic
ordering of unimers leads to the retardation of micellization.

Figure 6 shows the volume fractions of unimers (solid
line) and micelles (dotted-line) with M = 100 as a function of
temperature at φ = 0.004 (a), φ = 0.007 (b), and φ = 0.012
(c) in Fig. 5. In the dilute concentrations (a), the nematic mi-
celles grow up at a critical micelle temperature and the vol-
ume fraction of the nematic unimers decreases. In Fig. 6(b),
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The re-entrant micellization takes place at 0.006 < φ < 0.008 with decreasing
temperature.
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FIG. 6. Volume fractions of unimers (φ1: solid line) and micelles (φM:
dotted-line) with M = 100, as a function of temperature at φ = 0.004 (a),
φ = 0.007 (b), and φ = 0.012 (c) in Fig. 5.

we have the re-entrant micellization at two critical micelle
temperatures. The volume fraction of the isotropic micelles
first increases at T/TNI = 1.23. With decreasing temperature,
the isotropic micelles break up to nematic unimers and the
volume fraction φM goes to zero. Further decreasing tempera-
ture, we have the second micellization at T/TNI = 0.99, where
the nematic unimers aggregate and form nematic micelles. In
Fig. 6(c), the micellization takes place at T/TNI = 1.38 and
the volume fraction φM increases. With decreasing tempera-
ture, the isotropic unimers change to nematic unimers near
T/TNI = 1.15, where the volume fraction φM of the isotropic
micelles decreases. Further decreasing temperature, the vol-
ume fractions φ1 and φM jump at the NIT temperature: T/TNI

= 1.05, where the isotropic micelles change to the nematic
micelles.

These CMC and NIT curves may be hidden inside co-
existing curves, depending on the strength of the interactions
between solvents and copolymers. In Sec. V C, we calculate
phase separations including the CMC and NIT curves on the
temperature-concentration plane.

C. Phase separations

In this subsection, we calculate binodal and spinodal
curves on the temperature-concentration plane. We here
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CMC curve (dashed-curve) and NIT line (horizontal dotted-line), appeared
in Fig. 5.

assume that the solvent molecule is a good solvent for the
homopolymer (A): χA0 = 0, and put χ ≡ χB0 = χAB. The
interaction parameter χ is proportional to the inverse tem-
perature and then the Flory-Huggins interaction parameter is
given by χ = c1ν = c1/τ , where c1 is the numerical parameter.
Figure 7 shows the phase diagram with an upper critical so-
lution temperature (UCST) for c1 = 0.5 with nA = 100. The
solid curve shows the binodal (coexistence) and the dotted-
curve is the spinodal curve. The closed circle corresponds
to the critical point. Between the binodal and spinodal lines,
we have a metastable region and below the spinodal line, we
have an unstable region. Above the NIT temperature, two-
phase coexistence between two isotropic micelle phases ap-
pears in the region (3). Below the NIT temperature, we have
two-phase coexistence between two nematic micelle phases
in the region (4). Note that the binodal and spinodal lines at
higher concentrations are not depicted. For example, at T/TNI

= 0.9, the spinodal concentration exists at φ = 0.12.
Figure 8 shows the spinodal curves for various values of

c1. On increasing the value of c1, the interaction between the
copolymer B and the solvent molecule becomes poorer. We
find that the critical point shifts to higher temperatures and
the CMC line is hidden inside binodal and spinodal lines, in
which we have two phase coexistence between an isotropic
unimer phase in the region (1) and an isotropic micelle phase
in the region (3) above the NIT temperature. Below the NIT,
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values of c1. The closed circle shows the critical point. The phase diagram
has the CMC curve (dashed-curve) and NIT line (horizontal dotted-line), ap-
peared in Fig. 5.

two phase coexistence between a nematic unimer phase (2)
and a nematic micelle phase (4). On the other hand, as de-
creasing c1, the critical point shifts to lower temperatures be-
low the NIT temperature. When c1 � 0.432, the critical point
meets the NIT line and the intersection becomes a tricritical
point.

In this paper, we have assumed only two-distribution
of M-clusters and unimers. Recent experiments have shown
that the PEG-b-P(AzoPyl) micellar solution indicates that two
different-size of micelles are distributed in the solution.26 In
this case we can consider three-distribution model, including
unimers, M1-clusters, and M2-clusters. However the results
are qualitatively similar with Fig. 5. The volume fractions of
micelles increase at CMC and the amount of larger micelles
increases with increasing the polymer concentration.

In our model, if we take nA = 0, nb = 0, and t = 0,
the theory can describe the spherical aggregates of a low-
molecular-weight liquid crystal (nB = nm) dispersed in poor
solvent molecules.

VI. SUMMARY

In this paper we present a mean field theory to describe
self-assembly of liquid crystalline AB diblock copolymers,
consisting of a homopolymer (A) and a side-chain liquid crys-
talline polymer (B). We derive the free energy of the micel-
lar solutions and calculate the orientational order parameter
of mesogens inside the core of micelles, depending on the
size of micelles. It is shown that there is a critical size Mc

of the micelle: large spherical micelles with r > Mc have a
first-order NIT, but small micelles with r < Mc have a contin-
uous NIT due to the packing effects of mesogens inside the
core. The value of Mc is proportional to (nmω)3. We also find
the re-entrant micellization near the NIT temperature and the
UCST type phase diagrams which have four different regions:
isotropic unimer, isotropic micelle, nematic unimer, and ne-
matic micelle regions. The cooperative phenomena between
self-assembly and nematic ordering of the micelle can be con-
trolled by the temperature, concentration, and the mesogens
of side-chain liquid crystalline polymers.

In this paper we focus on dilute concentrations and con-
sider spherical micelles. At higher concentrations, cylindrical
or lamellar aggregates may appear. The theory presented here
can be the basis for the further studies.
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