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We present a mean field theory to describe biaxial nematic phases of side-chain liquid crystalline
polymers, in which rigid side-chains (mesogens) and rigid-backbone chains favor mutually perpen-
dicular orientations. Taking into account both excluded volume and attractive interactions between
rigid rods, novel biaxial nematic phases are theoretically predicted. We calculate uniaxial and biaxial
orientational order parameters as a function of temperature and the length of backbone chains. We
find a first-order biaxial-biaxial phase transition and a first (or second)-order uniaxial-biaxial one,
depending on the length of mesogens and backbone chains. © 2012 American Institute of Physics.
[http://dx.doi.org/10.1063/1.4771592]

I. INTRODUCTION

Biaxial nematic phase has been first theoretically pre-
dicted by Freiser.1 Since then, it has been the subject of much
experimental,2–10 computational,11–13 and theoretical13–22

work. Biaxiality occurs if anisotropic particles orient along
a second axis perpendicular to a main director of the
particles.23, 24 Such biaxiality is expected significant advan-
tages in display applications with a fast response.25 Biax-
ial phases of side-chain liquid crystalline polymers (LCPs)
have been studied in nematic and smectic A phases with side-
on or end-on attachment of mesogenic group to the polymer
backbone.26–30

When we consider a nematic phase of side-chain LCPs,
there are three uniaxial nematic phases, which were first con-
sidered by Wang and Warner.31 The three nematic phases can
be defined by two orientational order parameters: one is Sm

of nematogenic side-chains (mesogens) and the other is Sb of
a rigid-backbone chain. When one order parameter is posi-
tive, the other can be positive or negative.32, 33 Figure 1 shows
three principal uniaxial nematic phases for a side-chain LCP.
The N1 phase (Sm > 0 and Sb < 0) is defined as that the meso-
gens are aligned along to the ordering direction (z) and the
backbone chains are randomly distributed on the plane per-
pendicular to the director Dm. The N2 phase (Sm < 0 and
Sb > 0) is defined as the backbone chain is aligned along
to the ordering direction Db and the mesogens are randomly
distributed on the plane perpendicular to the backbone chain.
The third N3 phase is defined by Sm > 0 and Sb > 0, where
the backbone and mesogens are oriented along to the ordering
direction Dmb. In the N1 phase, the backbone chain adopts an
oblate shape. In the N2 and N3 phases, a prolate shape of the
backbone is obtained.34–40

In these uniaxial nematic phases (N1, N2), we can expect
biaxial nematic phases. Figure 1 schematically shows novel
biaxial nematic phases (N1b, N2b) of side-chain LCPs, where
the mesogens and backbone chains favor mutually perpendic-

a)Electronic mail: matuyama@bio.kyutech.ac.jp. URL: http://iona.bio.
kyutech.ac.jp/~aki/.

ular orientations.41 In the uniaxial nematic N1 phase, we can
expect additional ordering of backbone chains in the direction
db (minor director) perpendicular to the director Dm (major
director). This corresponds to biaxial ordering (N1b). In the
N2 phase, we may have a biaxial nematic (N2b) phase, where
the additional ordering of mesogens appears in the direc-
tion dm (minor director) perpendicular to the major director
Db. Recently, such mutually perpendicular orientations have
been theoretically predicted in mixtures of a liquid crystal and
a nanotube,32, 42 in liquid crystalline elastomers,43, 44 and in
combined main-chain/side-chain liquid crystalline polymers
using the self-consistent field theory.45

In this paper, we present a mean field theory to describe
the biaxial nematic phases of side-chain LCPs. Taking into
account both excluded volume and attractive interactions be-
tween rigid rods, the novel biaxial nematic phases are theoret-
ically predicted in side-chain LCP melts, where side-chains
(mesogens) and rigid-backbone chains favor mutually per-
pendicular orientations. We calculate uniaxial and biaxial ori-
entational order parameters and find first (or second)-order
uniaxial-biaxial phase transitions, depending on the length of
the mesogen and of the backbone chain.

II. FREE ENERGY

We consider a melt of a side-chain LCP, consisting of a
liquid crystalline backbone chain and rigid side-chains (meso-
gens). The repeating unit on the side-chain LCP consists of a
mesogen with the axial ratio nm(= Lm/d) and a rigid-backbone
chain of the axial ratio nb(= Lb/d), where Lm and Lb are the
lengths and d is the diameter of the mesogen and the back-
bone chain on the repeating unit. The total number of seg-
ments on the polymer is given by n = (nm + nb)t, where t
is the number of a repeating unit on the LCP. The volume
of the mesogen and that of the backbone chain are given
by vm = (π/4)d2Lm and vb = (π/4)d2Lb, respectively. The
volume per polymer molecule is given by V = (vm + vb)t
= (π/4)d3n and the number density of mesogens and back-
bone chains is given by c = t/V .
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FIG. 1. Three possible uniaxial nematic phases (N1, N2, N3) and two bi-
axial nematic phases (N1b, N2b) of side-chain liquid crystalline polymers.
Depending on two orientational order parameters: one is that Sm of a side-
chain (mesogen) and the other is Sb of a rigid-backbone chain, we can define
a nematic N1 phase with Sm > 0 and Sb < 0, a N2 phase with Sm < 0 and
Sb > 0, and a N3 phase with Sm > 0 and Sb > 0. Biaxial nematic N1b phase
is defined as a minor director db appears perpendicular to the major direc-
tor Dm. Biaxial nematic N2b phase is defined as a minor director dm appears
perpendicular to a major director Db.

The volume fraction of the mesogens is given by

xm = nm/(nm + nb), (1)

and that of the backbone chain is xb = nb/(nm + nb).
To describe the nematic ordering, we take into account

both the excluded volume interactions47 and the orientational-
dependent anisotropic interactions between liquid crystalline
molecules.48 Let νmm(>0) be the anisotropic (Maier-Saupe)
interactions between the mesogens, νmb be that between the
mesogen and the rigid-backbone chain, and νbb(> 0) be that
between the rigid-backbone chains. These anisotropic interac-
tion parameters are dimensionless parameters: ν ij ≡ Uij/kBT,
where T is the absolute temperature, kB is the Boltzmann con-
stant, Uij is the interaction energy between the components
i and j (i, j = m, b). Let fm(u) and fb(u) be the orientational
distribution function of the mesogen and the backbone chain
with the orientational unit vector u = {θ , ϕ}, defined by a po-
lar angle (0 ≤ θ ≤ π ) and an azimuthal angle (0 ≤ ϕ ≤ 2π ),
or solid angle d� = sin θdθdϕ. The nematic free energy is
given by46

βFnem/V =
∑

i,j=m,b

c

∫
fi(u) ln[4πfi(u)]d�

+1

2

∑
i,j=m,b

c2
∫ ∫

fi(u)fj (u′)βij (u, u′)d�d�′,

(2)

where β ij is the Mayer-Mayer function between two com-
ponents i and j. For the interaction between rigid rods, we
take into account both the excluded volume and the attractive
interaction:46–50

βij = vij

[ 8

π
|u × u′| − νijP2(cos γ )

]
, (3)

where vij = (π/4)LiLjd is the average excluded volume be-
tween the molecules i and j in an isotropic phase, γ is the

angle between the local orientations u and u′. Here we use
the additional theorem of spherical harmonics:

P2(cos γ ) = P2(cos θ )P2(cos θ ′) + 2
2∑

k=1

(2 − k)!

(2 + k)!

×P k
2 (cos θ )P k

2 (cos θ ′) cos[k(ϕ − ϕ′)], (4)

where the terms proportional to the associated Legendre poly-
nomials (P k

2 ) will vanish in a uniaxial nematic phase, which
does not depend on the azimuthal angle. In a biaxial nematic
phase, however, the terms of the Legendre polynomials (P 2

2 )
have a finite contribution.

The orientational order parameters Si (i = m, b) of a uni-
axial nematic phase is given by

Si =
∫

P2(cos θ )fi(θ, ϕ)d�, (5)

where P2(cos θ ) = (3/2)(cos 2θ − 1/3) and the biaxial order
parameter is given by

	i =
∫

D(θ, ϕ)fi(θ, ϕ)d�, (6)

where D(θ, ϕ) ≡ (
√

3/2) sin2 θ cos(2ϕ). Using the tensor or-
der parameter Si, αβ = (3/2)Si(nαnβ − δαβ /3), (α, β = x, y,
z), we have 	i = Si, yy − Si, xx and Si = Si, zz. Here Si, zz de-
scribes alignment of molecules along the z axis (major direc-
tor), whereas the nonzero value of 	i describes ordering along
the x or y axis. Then Eq. (4) can be given by

P2(cos γ ) = P2(cos θ )P2(cos θ ′) + D(θ, ϕ)D(θ ′, ϕ′). (7)

Substituting Eqs. (5)–(7) into (2), the nematic free energy is
given by

βFnem/n =
∑

i,j=m,b

xi

ni

∫
fi(u) ln[4πfi(u)]d�

−1

2
(νmm + 5/4)x2

m

(
S2

m + 	2
m

)
−(νmb + 5/4)xmxb(SmSb + 	m	b)

−1

2
(νbb + 5/4)x2

b

(
S2

b + 	2
b

)
, (8)

where the term 5/4 corresponds to the excluded volume inter-
actions.

Minimizing (8) with respect to fi(u) with the normaliza-
tion condition

∫
fi(u)d� = 1, we obtain the orientational dis-

tribution functions,

fm(u) = 1

Zm

exp[�m,uP2(cos θ ) + �m,bD(u)], (9)

for a mesogen and

fb(u) = 1

Zb

exp[�b,uP2(cos θ ) + �b,bD(u)], (10)

for a backbone chain, where we define

�m,u ≡ nm[(νmm + 5/4)xmSm + (νmb + 5/4)xbSb], (11)

�m,b ≡ nm[(νmm + 5/4)xm	m + (νmb + 5/4)xb	b],
(12)
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�b,u ≡ nb[(νbb + 5/4)xbSb + (νmb + 5/4)xmSm], (13)

�b,b ≡ nb[(νbb + 5/4)xb	b + (νmb + 5/4)xm	m]. (14)

The constants Zm and Zb can be obtained by the normalization
condition:

∫
fi(u)d� = 1, as

Zi = 4πIi[0, 0], (15)

where the function Ii (i = m, b) is defined as

Ii[p, q] ≡
∫ 1

0
dx

∫ 1

0
dy[P2(x)]p[D(x, y)]q

× exp

[
�i,u

3

2
(x2−1

3
)+�i,b

√
3

2
(1−x2) cos(4πy)

]
,

(16)

with p, q = 0, 1, 2, . . . .
The orientational order parameters can be numerically

calculated from Eqs. (5) and (6), using the distribution func-
tions (9) and (10):

Sm = Im[1, 0]/Im[0, 0], (17)

	m = Im[0, 1]/Im[0, 0], (18)

Sb = Ib[1, 0]/Ib[0, 0], (19)

	b = Ib[0, 1]/Ib[0, 0]. (20)

Substituting Eqs. (9) and (10) into Eq. (8), the nematic
free energy is given by

βFnem/n = 1

2
(νmm + 5/4)x2

m

(
S2

m + 	2
m

)
+(νmb + 5/4)xmxb(SmSb + 	m	b)

+1

2
(νbb + 5/4)x2

b

(
S2

b + 	2
b

)

−xm

nm

ln Im[0, 0] − xb

nb

ln Ib[0, 0]. (21)

III. PHASE DIAGRAMS

For numerical calculations of Eqs. (17)–(20), we here de-
fined the anisotropic interaction parameters

cmb = νmb/νmm, (22)

and

cb = νbb/νmm, (23)

where cmb and cb are constants. The larger values of cmb show
the stronger attractive interaction between the mesogen and
the backbone chain. When cmb > 0, the backbone chains favor
to be parallel to the mesogens, while when cmb < 0 the back-
bone chains favor to be perpendicular to the mesogens.32, 33, 43

The positive and negative values of νmb are related to the at-
tractive and repulsive anisotropic interactions, respectively,
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FIG. 2. (a) Phase diagram on (T/TNI, 1, nb) plane for cmb = 0.1 and nm = 2.
(b) The orientational order parameters plotted against the temperature T/TNI, 2
for nm = nb = 2.

which eventually lead to the parallel or perpendicular orienta-
tions. In the following, we set cb = 0.5. The reduced temper-
ature is defined as T̃ = 1/νmm(= kBT /Umm). When xm = 1,
the nematic-isotropic phase transition (NIT) of a pure meso-
gen takes place at nm(νmm + 4/5) = 4.54,49, 50 and then the
NIT temperature is given by

T̃NI = nm

4.54 − 1.25nm

, (24)

where the term 1.25nm corresponds to the excluded volume
effect between mesogens. The NIT temperature increases
with nm and diverges to the high temperatures at nm > 3.64
because of the excluded volume interactions.50

Figure 2(a) shows the phase diagram on (T/TNI, 1, nb)
plane for cmb = 0.1 and nm = 2. The temperature is nor-
malized by the NIT temperature TNI, 1 of nb = 1. The solid
line shows the first-order phase transition (N3IT) between an
isotropic and a nematic N3 phase. The N3IT temperature has
a minimum as a function of nb. For large nb, the anisotropic
coupling between mesogens and backbone chains prevails and
we have N3 phase. Figure 2(b) shows the orientational order
parameters Sm and Sb plotted against the temperature T/TNI, 2

for nm = nb = 2, where TNI, 2 is the N3IT temperature of nb

= 2 in Fig. 2(a). The orientational order parameters Sm and
Sb jump from zero to positive values at the N3IT tempera-
ture, while the biaxial order parameters 	m and 	b are zero.
This corresponds to the uniaxial nematic N3 phase, where
the mesogens and backbone chains are parallel to each other.
The orientational order parameter Sb of the backbone chain is
smaller than Sm, because we take cb = 0.5, which means the
attractive interaction νbb between backbone chains is weaker
than the νmm between mesogens. When cb = 1 and nm = nb,
we have Sm = Sb. The mean value of the uniaxial order pa-
rameters is given by

〈S〉 = xmSm + xbSb (25)
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FIG. 3. Phase diagram of a side-chain LCP, plotted against the axial ratio
nb of the backbone chain with cmb = −1.5 and nm = 2. The solid (dotted)
lines show first (second)-order phase transitions. The red closed circle shows
a triple point (TP), where there phases coexist. The black closed circle shows
a bicritical point (BP), where two distinct second-order lines meet at the first-
order line.

and the mean value of the biaxial order parameters is

〈	〉 = xm	m + xb	b. (26)

Figure 3 shows the phase diagram on the (T/TNI, 1, nb)
plane for nm = 2 and cmb = −1.5. The solid (dotted) lines
show first (second)-order phase transitions. The red closed
circle shows a triple point (TP), where I, N1, and N2 phases
coexist. The black closed circle shows a bicritical point (BP),
where two distinct second-order lines meet at the first-order
line.51 For short backbone chains of nb < 2.5, we find the
first-order nematic N1-isotropic phase transition (N1IT) and
the second-order uniaxial N1-biaxial N1b phase transitions
(N1N1bT). For long backbone chains of nb > 2.5, we find
the first-order nematic N2-isotropic phase transition (N2IT)
and the second-order uniaxial N2-biaxial N2b phase transi-
tions (N2N2bT). At nb � 2.5 we have the first-order N1N2T
and N1bN2bT. The biaxial nematic phases N1b and N2b appear
between the N1 and N2 phases and are broadened with de-
creasing temperature. A similar phase diagram has been pre-
dicted by Rusakov and Shliomis.40

Figure 4 shows the orientational order parameters plot-
ted against nb at T/TNI, 1 = 0.8 in Fig. 3. The solid curves
show the uniaxial order parameters Sm and Sb and the broken
curves are the biaxial order parameters 	m and 	b. We have
the first-order N1bN2bT at nb � 2.5, where the order parame-
ters jump. We also find the second-order N1N1bT at nb � 2.2
and N2N2bT at nb � 3, where the order parameters 	m and 	b

are continuously changed. The N1 and N2 phases are differ-
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FIG. 4. Orientational order parameters plotted against nb at T/TNI, 1 = 0.8 in
Fig. 3.
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FIG. 5. (a) Order parameters plotted against temperature for nb = 2.3. (b) nb

= 2.6 in Fig. 3.

ent in a sign of order parameters Sm and Sb and have the same
symmetry, or uniaxial nematic phase. However, the biaxial ne-
matic phase is less symmetric than the uniaxial phase and the
transition form the uniaxial to the biaxial state is of second
order.1, 15 The biaxial N1b and N2b phases are also different
in a sign of order parameters and have the same symmetry,
resulting the first-order phase transition.

Figure 5 shows order parameters plotted against temper-
ature for nb = 2.3 (Panel (a)) and nb = 2.6 (Panel (b)) in
Fig. 3. The temperature is normalized by the NIT temperature
(TNI,nb

) of nb = 2.3 (Panel (a)) and nb = 2.6 (Panel (b)). The
uniaxial order parameters Sm and Sb jump at the first-order
N1IT (Panel (a)) and N2IT (Panel (b)) temperatures. The mean
value of the uniaxial order parameters is small, however, the
Sm and Sb have large values. The absolute value of the biax-
ial order parameter is determined by the difference between
the two elements of the tensor order parameters: |〈	〉| = |Sxx

− Syy|, and the biaxial order parameter |〈	〉| continuously in-
creases at the second-order N1N1bT (Panel (a)) and N2N2bT
(Panel (b)). In the N1b (Panel (a)), the biaxial order parameter
	m is almost zero and the |	b| increases with decreasing tem-
perature, because the backbone chains start to orient along to
the second director. On the other hand, in the N2b (Panel (b)),
the biaxial order parameter 	b is almost zero and the |	m|
increases with decreasing temperature, because the mesogens
start to orient along to the second director.

Figure 6 shows the phase diagram on the (T/Tc, nb)
plane for nm = 4 and cmb = −1.5. The temperature is nor-
malized by the temperature Tc at the BP. As discussed in
Eq. (24), when nm > 3.56, the NIT temperature disappears,
or an isotropic phase disappears, because of the excluded
volume interactions between long mesogens, and then we
have the uniaxial N1 and N2 phases at high temperatures. On
decreasing temperature we have the second-order uniaxial-
biaxial phase transitions: N1N1bT and N2N2bT. We also find
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FIG. 6. Phase diagram for cmb = −1.5 and nm = 4. The solid (dotted) lines
show first (second)-order phase transitions.

the first-order N1N2T and N1bN2bT. The region of the biaxial
phases is broadened on decreasing temperature.

Figure 7 shows the phase diagram on the (T/Tc, nb) plane
for nm = 6 and cmb = −1.5. On increasing the length of the
mesogen, the uniaxial nematic N3 phase appears between N1

and N2 phases. The black closed circle shows a tricritical
point (TCP), where the first-order phase transition line meets
the second-order one. The first-order N1N3T and N2N3T lines
terminate at a liquid-gas like critical point (CP). We also find
three TPs, where three different nematic phases coexist. For
the long mesogens, we find many multi-critical points appear
on the phase diagram. In Figs. 6 and 7, we calculate for nm

= 4 and nm = 6, respectively. The lengths of mesogens are
larger than 3.64 and then the isotropic phase disappears due
to the excluded volume effects. In the nematic phase, how-
ever, the anisotropic interaction terms ν ij exist and then the
phase diagrams depend on temperature.

Figure 8 shows order parameters plotted against temper-
ature for nm = 6 and nb = 11 in Fig. 7. We have two first-
order phase transitions: N3N2T and N2N2bT, at T/Tc = 0.99
and 0.95, respectively, where the value of Sm and the biaxial
order parameters jump. In the N2b, the biaxial order parame-
ter 	b is almost zero and the |	m| increases with decreasing
temperature, because the mesogens start to orient along to the
second director. The mean value 〈S〉 of the uniaxial order pa-
rameter decreases with decreasing temperature, because the
mesogens align perpendicular to the first director.

In this paper we have calculated four order parameters as
a function of temperature. To observe such uniaxial and bi-
axial nematic phases introduced here, we need to experimen-
tally determine orientational order parameters of mesogens
and backbone chains, individually. The perpendicular orien-
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FIG. 7. Phase diagram cmb = −1.5 and nm = 6. The solid (dotted) lines show
first (second)-order phase transitions.
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tations may be realized side-on side-chain liquid crystalline
polymers. Our results demonstrate that the combinations of
a long mesogen and a backbone chain are capable of form-
ing biaxial nematic phases. We here focus on biaxial nematic
phase. Biaxiality in smectic A phase will also be discussed by
applying our model.

IV. SUMMARY

We have presented a theory to describe novel biaxial ne-
matic phases of a side-chain liquid crystalline polymer by tak-
ing into account both excluded volumes and attractive inter-
actions between rigid rods. We calculate uniaxial and biax-
ial orientational order parameters, depending on temperature
and the length of mesogens and backbone chains. Three dif-
ferent uniaxial nematic phases (N1, N2, and N3) and two bi-
axial nematic phases (N1b and N2b) are predicted. For short
mesogens and backbone chains, we predict the first-order
uniaxial-biaxial phase transitions: N1N1bT and N2N2bT. For
long mesogens with excluded volume effects, uniaxial-biaxial
phase transitions can be a first or a second-order phase tran-
sitions, depending on the length of backbone chain. The mu-
tually perpendicular alignment between mesogens and back-
bone chains can be a major cause of the novel biaxial nematic
phases. We hope that these results encourage further experi-
mental and theoretical studies for biaxial nematic phases of
liquid crystalline polymers.
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