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We present a mean field theory to describe phase behaviors in mixtures of a polymer and a cholesteric
liquid crystal under an external magnetic or electric field. Taking into account a chiral coupling be-
tween a polymer and a liquid crystal under the external field, we examine twist-untwist phase transi-
tions and phase separations in the mixtures. It is found that a cholesteric-nematic phase transition can
be induced by not only the external field but also concentration and temperature. Depending on the
strength of the external field, we predict cholesteric-paranematic (Ch+pN), nematic-paranematic
(N+pN), cholesteric-nematic (Ch+N) phase separations, etc., on the temperature-concentration
plane. We also discuss mixtures of a non-chiral nematic liquid crystal and a chiral dopant. © 2014
AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4901085]

I. INTRODUCTION

The behaviors of liquid crystals in the presence of an
external field are of important for many technological appli-
cations as well as fundamental physical researches.1 The ef-
fects of an external field have been studied on the nematic-
isotropic phase transition (NIT) of nematic liquid crystals,2, 3

the cholesteric-nematic phase transitions (CNT) of cholesteric
liquid crystals,4–10 liquid crystalline elastomers,11–13 and the
phase diagrams of mixtures of polymers and nematic liquid
crystals.14–16

The influence of an external magnetic or electric field on
a cholesteric liquid crystal has been studied theoretically17–27

and experimentally.28–32 This problem in an external field was
first studied by de Gennes6 and Meyer.7–9 Applying the ex-
ternal field perpendicular to a helical axis of the cholesteric
phase, untwisting of the helix takes place with positive di-
electric or diamagnetic anisotropy. We here assume that the
thickness of the sample is sufficiently large and the boundary
conditions can be neglected. On increasing the external field
H, the pitch p increases and diverges at a critical value Hc of
the external field. When H > Hc, we have a nematic phase,
oriented uniformly along the external field. This is known as
a field-induced twist-untwist transition (or CNT),10 which has
been used in liquid crystal displays.

Most experiments of the field-induced CNT have been
carried out, not on pure cholesteric liquid crystals, but on mix-
tures of a nematic liquid crystal and a chiral dopant.7, 8, 31 It
is well known that the critical field Hc is a linear function
of the concentration of dopants in the dilute regime and the
pitch of a helix is inversely proportional to the concentration.1

There are many studies of the CNT based on the Frank’s elas-
tic theory,1, 17–26 however, it cannot describe the concentration

a)Electronic mail: matuyama@bio.kyutech.ac.jp. URL: http://iona.bio.
kyutech.ac.jp/~aki/.

dependences. To describe the concentration dependences, we
need to consider binary mixtures of a liquid crystal and an-
other molecule. Recently, developing the molecular theory
of the cholesteric phase presented by Lin-Liu et al.,33, 34 we
have presented the molecular theory to describe phase be-
haviors of binary mixtures of a liquid crystal and a poly-
mer, by taking into account of the chiral coupling between
the components.35 We have obtained the expression of the
pitch of a cholesteric phase and the twist elastic constant as a
function of orientational order parameters and concentrations
and found various phase separations between a cholesteric
and an isotropic phases (Ch+I) and two cholesteric phases
(Ch1+Ch2).

In this paper, we develop our previous theory35 to de-
scribe cholesteric phases in mixtures of a cholesteric liquid
crystal and a polymer chain in the presence of an external
magnetic or electric field. We derive the free energy of the
mixtures under the external field and calculate the pitch and
the critical field as a function of orientational order parameters
and concentrations. We predict the field-induced CNT on the
temperature-concentration plane and novel phase behaviors,
such as a cholesteric-paranematic (Ch+pN) and cholesteric-
nematic (Ch+N) phase separations, etc., depending on the
strength of the external field. Our theory can also apply to
mixtures of a non-chiral nematic liquid crystal and a chiral
dopant, where the cholesteric phase is induced by the chi-
ral coupling between the liquid crystal and dopant under an
external field. Our results are consistent with experimental
observations.

In Sec. II, we extend a mean field theory to describe bi-
nary mixtures of a cholesteric liquid crystal and a polymer
chain in the presence of an external field. In Sec. III, we show
some numerical results of pitch, the strength of a critical field,
and phase diagrams on the temperature-concentration plane
for the mixtures. In the Appendix, we discuss mixtures of a
nematic liquid crystal and a chiral dopant.

0021-9606/2014/141(18)/184903/9/$30.00 © 2014 AIP Publishing LLC141, 184903-1
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II. FREE ENERGY OF MIXTURES OF A POLYMER
AND A CHOLESTERIC LIQUID CRYSTAL

A. Chiral free energy

Consider a binary mixture of a liquid crystal molecule
and a polymer chain for which liquid crystalline ordering is
forbidden in the constituent pure polymers, such as a flexible
polymer chain. To describe cholesteric phases of the mixtures,
we develop a mean field model proposed by Lin-Liu et al.33, 34

We here take into account an anisotropic coupling between
polymers and liquid crystals.

Let NP be the number of a polymer chain with nP seg-
ments and NL be the number of a low-molecular weight liq-
uid crystal molecule of length L and diameter D. The volume
of the liquid crystal and that of the polymer chain is given
by vL = (π/4)D2L and vP = a3nP , respectively, where a3

is the volume of a polymer segment. Let φL = vLρL and
φP = vP ρP be the volume fraction of the liquid crystal and
the polymer, respectively, where ρ i is the number density
ρi = Ni/V of the molecule i(= L, P): φL + φP = 1. Using
the axial ratio nL = L/D of the liquid crystal, the volume per a
liquid crystal molecule is given by vL = a3nL where we here
assume a3 = (π /4)D3 for simplicity.

The free energy consists of the following three terms:

F = Fmix + Fani + Fext . (1)

The first term in Eq. (1) is the free energy of an isotropic
mixing of a polymer and a liquid crystal molecule and is given
by Flory-Huggins theory for polymer solutions36

a3βFmix/V = φL

nL

ln φL + φP

nP

ln φP + χφLφP , (2)

where χ is the Flory-Huggins interaction parameter between
a liquid crystal and a polymer in an isotropic phase and β

= 1/kBT; T is the absolute temperature, kB is the Boltzmann
constant.

The second term in Eq. (1) shows the free energy
for cholesteric phases. The configuration of the constituent
molecules is characterized by its position vector r and its ori-
entation unit vector �, defined by a polar angle θ and an az-
imuthal angle φ, or solid angle d�(= sin θdθdϕ), in a fixed
coordinate frame. Let fi(n(r) · �) be the orientational distri-
bution function of the constituent molecule i(= L, P), where
n(r) is the local director. It should be noted that the distri-
bution function depends only on the relative angle between
the local director n(r) and the molecular orientation vector �.
The anisotropic part of the free energy in the second virial
approximation is given by

βFani/V =
∑

i=L,P

ρi

∫
fi(n(r) · �) ln 4πfi(n(r) · �)drd�

+1

2

∑
i,j=L,P

ρiρj

∫
fi(r1,�1)fj (r2,�2)

×βUij (r1,�1; r2,�2)dR, (3)

where dR ≡ dr1dr2d�1�2. The first term in Eq. (3) shows
the entropy changes due to an orientational ordering and Uij
is the orientation-dependent intermolecular potential between

two particles i and j (i, j = L, P). We here take UPP = 0 be-
cause we consider non-nematic polymer chains for the con-
stituent pure polymers. The lowest-order contributions to the
interaction potential for the cholesteric phase are given by in
a series of the Legendre polynomials33, 35

Uij (r1,�1; r2,�2) = Uij,1(r12)(�1 × �2 · r̂12)P1(�1 · �2)

+Uij,2(r12)P2(�1 · �2), (4)

where we have truncated by P2(x). The potential Uij, 1 shows
the chiral interaction between two particle i and j. The term
�1 × �2 · r̂12 represents scalars coupling between orienta-
tional and spatial variables, where r̂12 = (r2 − r1)/|r12|. The
potential Uij, 2 shows the intermolecular potential that ac-
counts for the formation of a nematic phase. We here assume
that the potentials are short range interactions which have
been used in Maier-Saupe38 and Onsager models.39 We em-
ploy a simple square wall interaction potential with a short
range d0, which is the order of the particle size. Following
the symmetry consideration for cholesteric phases, we require
that the first term in Eq. (4) is odd in �1 · �2 and the second
term be even.37

The last term in Eq. (1) is the magnetic (or electric) free
energy relevant to orientational order. When the external mag-
netic field H is applied to the molecule i(= L, P) having a
diamagnetic anisotropy 
χ i, the external free energy is given
by1

Fext = −
∑

i=L.P

niρi

∫

χiHαQ

(i)
αβ(r)Hβdr, (5)

where Q
(i)
αβ(r) is the second rank order parameter tensor of the

molecule i1

Q
(i)
αβ(r) = Si

(
3

2
nα(r)nβ(r) − 1

2
δαβ

)
, (6)

and Si is the scalar orientational order parameter of the parti-
cle i(= L, P)

Si =
∫

P2(n(r) · �)fi(n(r) · �)d�. (7)

In order to calculate the distortion free energy due to the
spatial variation of the director in a cholesteric phase, we as-
sume that the director is uniformly twisted along z axis with a
pitch p = 2π /q

n(r) = (cos θ, sin θ, 0). (8)

The scalar order parameters do not depend on position r and
θ is a function of z in our mean field approximations. We here
set the magnetic field H is taken along y axis

H = (0,H, 0). (9)

When 
χ i > 0, the molecules are oriented along the external
field.

Substituting Eqs. (6) and (9) into Eqs. (3)–(5), we ob-
tain the free energy of the cholesteric phase (refer to previous
paper35 for details)

Fch ≡ Fani + Fext = Fnem + Fdis, (10)
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where we have separated the free energy into two parts for
convenience. One is the nematic free energy of Maier-Saupe
type38

a3βFnem/V =
∑

i=L,P

φi

ni

∫
fi(n(r) · �) ln 4πfi(n(r) · �)d�

− 1

2
νLLφLSL(φLSL + 2εnφP SP ), (11)

where the interaction parameter νLL(≡ −βULL, 2 > 0) cor-
responds to the orientational-dependent (Maier-Saupe)
interaction parameter between liquid crystal molecules38 and
εn≡νLP/νLL: the parameter νLP(≡ −βULP, 2) is the
orientational-dependent interaction parameter between a liq-
uid crystal and a polymer. When νLP > 0, it means the attrac-
tive interaction between a liquid crystal and a polymer chain.

The second term of Eq. (10) shows the distortion energy
due to the spatial variation of the director in the presence of
an external field

a3βFdis/V = −1

2
νLLφLSL(φLSL + 2εnφpSP )g(Q) (12)

where we define Q ≡ qd0. The function g(Q) contains the
spatial variation of the twist angle and is given as

g(Q) ≡ − Q

8π2

∫ 1/Q

0

[(
∂θ

∂z̃

)2

− 4πQ∗
(

∂θ

∂z̃

)

−
(

2π

ξ

)2(
sin2 θ − 1

3

)]
dz̃, (13)

Q∗ ≡ Q0
φLSL + 2εxφP SP

φLSL + 2εnφP SP

, (14)

and

ξ 2 ≡ νLLφLSL(φLSL + 2εnφP SP )

2
(
φLSLh2

L + φP SP h2
P

) , (15)

where we define z̃ ≡ z/(2πd0), Q0 ≡ cLL/νLL, and εx
≡ cLP/cLL. The chiral interaction parameter cLL(≡ −βULL, 1
> 0) corresponds to the chirality between cholesteric liquid
crystal molecules and cLP(≡ −βULP, 1) is that between a liq-
uid crystal and a polymer. The larger values of cij shows the
stronger chiral coupling between molecules. The value of Q∗

has the same form with the cholesteric pitch (p∗ = 2πd0/Q∗)
of the mixtures in the absence of an external field and Q0
shows the pitch of the pure cholesteric liquid crystals in the
absence of an external field.35 The value of ξ is the mag-
netic coherence length.1 The external field is given through
the parameters h2

L ≡ 3β
χLH 2 and h2
P ≡ 3β
χP H 2 for


χ i > 0.

B. Cholesteric pitch

The cholesteric pitch p(= 2πd0/Q) in an equilibrium state
can be derived by minimizing the distortion free energy Fdis
(Eq. (12)). The function θ (z) should satisfy the condition for
minimum Fdis and the corresponding Euler equation is given
by (

ξ

2π

)2 (
∂θ

∂z̃

)2

+ sin2 θ = c, (16)

where c is an arbitrary constant. The pitch p of the cholesteric
phase satisfying the condition of a minimum in Fdis is

p =
∫ p

0
dz =

∫ 1/Q

0
2πd0

(
∂z̃

∂θ

)
dθ, (17)

and using Eq. (16) we obtain

1

Q
=

(
2

π

)
ξK(c), (18)

where K(c) is the complete elliptic integral of the first kind

K(c) =
∫ π/2

0

dθ√
c − sin2 θ

. (19)

From the behavior of K(c), the value of 1/Q clearly diverges
as c → 1.

Substituting Eqs. (16) and (19) into (13), we obtain

g(Q) = − 1

2ξ 2

(
1

3
− c

)
− Q

(
−Q∗ + 2

πξ
E(c)

)
, (20)

where E(c) is the complete elliptic integral of the second kind

E(c) =
∫ π/2

0

√
c − sin2 θdθ. (21)

The constant c can be determined by dg(Q)/dc = 0 and we
then obtain

E(c) = π

2
ξQ∗ (22)

and

p

p0

= Q0

Q
= 4

π2
K(c)E(c)

Q0

Q∗

= 4

π2
K(c)E(c)

[
φLSL + 2εnφP SP

φLSL + 2εxφP SP

]
, (23)

where p0 = 2πd0/Q0 is the pitch of a pure liquid crystal in the
absence of the external field. When φP = 0, Eq. (23) results
in the pitch of the pure liquid crystal derived by de Gennes.1

Substituting Eq. (22) into (20), the function g(Q) for the
minimum of the distortion free energy is given by

g(Q) = 1

2ξ 2

(
c − 1

3

)
, (24)

where the constant c is determined by Eq. (22).
The value of second elliptic integral (21) is larger than 1

and increases with increasing c from c = 1. When (π /2)ξQ∗

> 1, the value of c is determined by Eq. (22) and the pitch Q
of the cholesteric phase is given by Eq. (18). When (π /2)ξQ∗

< 1, we have Q = 0 and c = 1 from Eq. (16). The cholesteric
phase is defined by Q > 0, SL �= 0, and SP �= 0, the nematic
phase is given by Q = 0, SL �= 0, and SP �= 0, and the isotropic
phase is defined by Q = SL = SP = 0. The orientational order
parameters are determined by minimizing the free energy as
shown in Subsection II C.

C. Orientational distribution functions
in an equilibrium state

The orientational distribution function fL(n(r) · �) of the
liquid crystals and fP (n(r) · �) of the polymer chains are
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determined by the cholesteric free energy (Eq. (10)) with re-
spect to these functions: (δFch/δfi) = 0, under the normaliza-
tion condition ∫

fi(n(r) · �)d� = 1. (25)

We then obtain the distribution function of the liquid crystal
molecules

fL(x) = 1

ZL

exp[nLνLL(φLSL + εnφP SP )

× (1 + gL(Q))P2(x)], (26)

where we define

gL(Q) ≡ − Q

8π2

∫ 1/Q

0

[(
∂θ

∂z̃

)2

− 4πQ∗
1

(
∂θ

∂z̃

)

−
(

2π

ξ1

)2 (
sin2 θ − 1

3

)]
dz̃, (27)

Q∗
1 ≡ Q0

φLSL + εxφP SP

φLSL + εnφP SP

, (28)

and

ξ 2
1 ≡ νLL(φLSL + εnφP SP )

2h2
L

. (29)

The distribution function of the polymer chains is given
by

fP (x) = 1

ZP

exp[nP νLP φLSL(1 + gLP (Q))P2(x)], (30)

where we define

gLP (Q) ≡ − Q

8π2

∫ 1/Q

0

[(
∂θ

∂z̃

)2

− 4παx

(
∂θ

∂z̃

)

−
(

2π

ξ2

)2 (
sin2 θ − 1

3

)]
dz̃, (31)

αx ≡ cLP/νLP, and

ξ 2
2 ≡ νLP φLSL/

(
2h2

P

)
. (32)

The constants ZL and ZP are determined by the normal-
ization condition as ZL = 4π I0[Q] and ZP = 4πJ0[Q], respec-
tively. The functions Im and Jm are defined as

Im[Q] ≡
∫ 1

0
[P2(x)]m exp[nLνLL(φLSL + εnφP SP )

× (1 + gL(Q))P2(x)]dx, (33)

Jm[Q] ≡
∫ 1

0
[P2(x)]m exp[nP νLP φLSL

× (
1 + gLP (Q)

)
P2(x)]dx, (34)

respectively, where m = 0, 1, 2, . . . .

Using Eqs. (16), (18), and (22) we obtain

gL(Q) = 1

2ξ 2
1

(
c − 1

3

)

−Q

[
−Q∗

1 +
(

1

ξ 2
+ 1

ξ 2
1

)
ξ

π
E(c)

]
(35)

for Eq. (27) and

gLP (Q) = 1

2ξ 2
2

(
c − 1

3

)

−Q

[
−αx +

(
1

ξ 2
+ 1

ξ 2
2

)
ξ

π
E(c)

]
(36)

for Eq. (31).
Substituting Eqs. (26) and (30) into Eq. (7), the scalar

orientational order parameters SL and SP can be determined
by the two coupled-self-consistency equations

SL = I1[Q]/I0[Q], (37)

SP = J1[Q]/J0[Q]. (38)

Using the distribution functions, Eqs. (26) and (30), the
free energy (Eq. (10)) of the cholesteric phase is given by

a3βFch/V = 1

2
νLLφLSL

(
φLSL + 2εnφP SP

)
(1 + g(Q))

− φP

nP

ln J0[Q] − φL

nL

ln I0[Q]. (39)

The total free energy F of our system is given by the sum of
Eqs. (2) and (39).

The chemical potential of the liquid crystal molecule is
given by

βμL = β(∂F/∂NL)N
P

= nL

[
1

nL

ln φL +
(

1

nL

− 1

nP

)
φP + χφ2

P

+ 1

2
φLSL(φLSL + 2εnφP SP )

(
1 + g(Q)

)
− 1

nL

ln I0[Q]

]
, (40)

and that of the polymer

βμP = β(∂F/∂NP )N
L

= nP

[
1

nP

ln φP +
(

1

nP

− 1

nL

)
φL + χφ2

L

+ 1

2
φLSL(φLSL + 2εnφP SP )(1 + g(Q))

− 1

nP

ln J0[Q]

]
. (41)

In Sec. III, we show some numerical results of the phys-
ical properties of the cholesteric phase in the presence of the
external field.
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III. MIXTURES OF A CHOLESTERIC LIQUID CRYSTAL
AND A POLYMER

In our numerical calculation, we have three interaction
parameters related to cholesteric ordering: the chiral inter-
action parameter εx = cLP/cLL, the nematic interaction εn
= νLP/νLL between a polymer and a liquid crystal, and
Q0(≡ cLL/νLL = 2πd0/p0) is the pitch of the pure liquid crys-
tal. We can estimate as Q0 � 0.01 for the typical pitch p0
= 3000 Å and the length d0 = 30 Å of a liquid crystal
molecule.

The cholesteric phase of a pure liquid crystals in the ab-
sence of an external field appears at

nLνLL = nLULL,2

kBTCI

� 4.55, (42)

where TCI shows the cholesteric-isotropic phase transition
(CIT) temperature of a pure liquid crystal in the absence of
an external field. We then define the reduced temperature

τ ≡ T/TCI = 4.55/(nLνLL). (43)

The numerical parameters are given as a function of the tem-
perature τ : cLL = Q0νLL, cLP = εxcLL, and νLP = εnνLL. The
estimations of the interaction parameters εn and εx have been
discussed in our previous paper35 and are of the order of
0.1–1, resulting the twist elastic constant K22 ∼ 10−6 dyn of
a typical value.

A. Twist-untwist transitions and a critical field

In this subsection, we first show the twist-untwist transi-
tions in the mixtures. For numerical calculations, we here take
nL = 2, εn = 0.3, and hP = 0 (note that when hP = 0 we have
1/ξ 2

2 = 0).
Figure 1 shows order parameters SL, SP, and the pitch

Q/Q0(∝ p−1) plotted against the temperature T/TCI at the
polymer concentration φP = 0.001 for εx = 0.3, nP = 10,
and hL = 0.014. The pitch Q is normalized by Q0 of the
pure liquid crystal in the absence of the external field. At
low temperatures, we have the cholesteric phase with SL > 0,
SP > 0, and Q > 0. As increasing temperature, the value of Q
decreases and becomes zero, where the cholesteric (Ch) phase
changes to the nematic (N) phase with Q = 0. We find the
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FIG. 1. Order parameters SL, SP, and the pitch Q/Q0(∝ p−1) plotted against
the temperature T/TCI at the polymer concentrations φP = 0.001 for εx = 0.3,
nP = 10, and hL = 0.014.
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FIG. 2. Order parameters SL, SP, and the pitch Q/Q0(∝ p−1) plotted against
the concentration φP at the temperature T/TCI = 0.84 for εx = 0.3, nP = 10,
and hL = 0.014.

twist-untwist CNT, which depends only on the pitch while
the orientational order parameters continuously change. Fur-
ther increasing temperature, orientational order parameters
jump to nonzero values and the system shows a weak nematic
(or paranematic: pN) phase. We find the nematic-paranematic
phase transition (NpNT). The order parameter SP is larger
than SL because of the anisotropic coupling εn between the
polymer and liquid crystal. The NpNT is the first-order phase
transition, while the CNT is the second-order one.

Figure 2 shows order parameters SL, SP, and the pitch
Q/Q0(∝ p−1) plotted against the concentration φP at the tem-
perature T/TCI = 0.84 for εx = 0.3, nP = 10, and hL = 0.014.
On increasing the polymer concentration, the value of Q de-
creases and we have the CNT and NpNT. As shown in Figs. 1
and 2, we find that the CNT and NpNT can be induced by tem-
perature and concentration. On increasing the external field
hL, the CNT shifts to lower temperatures and lower concen-
trations. When hL = 0, we only have the CIT.35

The critical field strength (hc
L), where the pitch p of a

twist in the cholesteric tends to infinity, or Q = 0, is given by
E(1) = 1 in Eq. (22)

hc
L = π

2
Q∗

√
1

2
νLL(φLSL + 2εnφP SP ). (44)

When hL < hc
L we have the cholesteric phase, while hL

> hc
L the untwisting of the cholesteric twist takes place and

the nematic phase appears. The term in the distortion free en-
ergy (Eq. (12)) proportional to g(Q) can be identified as a bare
twist elastic constant (K22) and then we obtain

K̃22 = νLL

2
SLφL

(
φLSL + 2εnφP SP

)
, (45)

where K̃22 ≡ a(K22/kBT ). Using the twist elastic constant,
we obtain the critical value (44) of the external field for the
mixtures

hc
L = π

2
Q∗

√
K̃22

φLSL

. (46)

The orientational order parameters can be calculated by
Eqs. (37) and (38) with Q = 0, c = 1, and ξ1,c ≡ ξ1(hc

L). When
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FIG. 3. Critical field hc
L as a function of φP for various values of the chiral

interaction εx at T/TCI = 0.86 for εn = 0.3 and nP = 10.

φP 	 1, Eq. (14) can be expanded as

Q∗ � Q0

[
1 + 2(εx − εn)

SP

SL

φP · · ·
]
. (47)

When εx > εn (εx < εn), the pitch p(∝ 1/Q) decreases (in-
creases) with increasing φP. The value of (εx − εn)SP/SL
corresponds to the “microscopic twisting power” of the so-
lute, depending on the nature of both solute and solvent
molecules.1 Then the strength of the critical field depend on
the chiral interaction parameter εx.

Figure 3 shows the critical field hc
L as a function of φP for

various values of the chiral interaction εx at T/TCI = 0.86 for
εn = 0.3 and nP = 10. When hL < hc

L we have the cholesteric
phase, while hL > hc

L the untwisting of a cholesteric twist
takes place and the nematic phase appears. When εx = 0.2,
the value of the critical field decreases with increasing φP and
jumps to zero at φP � 0.26. When φP > 0.26, the system al-
ways shows a nematic or paranematic phase in the presence of
an external field. When the chiral interaction between a poly-
mer and a liquid crystal is strong (εx = 1), the critical field hc

L

has a maximum as a function of φP.
Figure 4 shows the order parameters SL, SP, and the pitch

wavenumber Q/Q0(∝ p−1) plotted against the external field
hL at the polymer concentrations φP = 0.01, T/TCI = 0.95
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FIG. 4. Order parameters SL, SP, and the pitch Q/Q0(∝ p−1) plotted against
the external field hL at the polymer concentrations φP = 0.001, T/TCI = 0.95
for εx = 0.2.

for εx = 0.2. On increasing the strength of the external field,
the pitch p diverges to infinity (Q → 0) and the CNT takes
place due to the external field. The orientational order pa-
rameters slightly increase with increasing hL. As shown in
Figs. 1, 2, and 4, our theory demonstrates that the CNT can
be induced by not only external field but also temperature and
concentration.

B. Phase separations under an external field

In this subsection, we show some numerical results of
the phase diagrams on the temperature-concentration plane
for the mixtures of a polymer and a cholesteric liquid crys-
tal under an external field. The equilibrium free energy is
calculated by substituting Q into Eq. (39). The coexistence
(binodal) curve can be calculated by the standard common-
tangent construction in the free energy (Eq. (1)) to find coex-
isting phases of different concentrations. We here take χ /νLL
= 0.1. The binodal curves can also be obtained by solving the
two-phase coexistence conditions: the chemical potentials μL
and μP of coexisting phases have to be equal to each other.40

The phase diagrams in the absence of an external field
have been discussed in our previous paper,35 where we find
the phase separation (Ch+I) between a cholesteric and an
isotropic phase. Under an external field, the CNT takes place,
depending on the temperature and concentration, as shown
in Figs. 1 and 2, and then the phase diagrams are drastically
changed.

Figure 5 shows the phase diagram on the temperature-
concentration plane for εx = 0.2 and nP = 10 in the presence
of a weak external field hL = 0.01. The solid curves are the
binodal line, the dotted line shows the NpNT, and the dashed
line is the CNT, which corresponds to the critical field in
Fig. 3. The NpNT temperature of the pure liquid crystal
(φP = 0) shifts to higher temperatures because of the exter-
nal field. When hL = 0, we have the CIT at T/TCI = 1 and the
(Ch+I) phase separation appears below T/TCI = 1.35 For the
weak external field hL = 0.01, the nematic phase appears on
the narrow region between the Ch and pN phases. The CNT
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FIG. 5. Phase diagram on the temperature-concentration plane for
εx = 0.2 and nP = 10 in the presence of a weak external field hL = 0.01.
The cholesteric, nematic, and paranematic states are denoted by Ch, N, and
pN, respectively. The solid lines represent binodal lines, dotted lines show
the first-order phase transitions, and dashed lines correspond to continuous
phase transitions.
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FIG. 6. Phase diagram on the temperature-concentration plane for εx = 0.2
and nP = 10 in the presence of an external field hL = 0.014.

and NpNT temperature decrease with increasing the polymer
concentration φP. We find the phase separation (N+pN) be-
tween a nematic and a paranematic phase at 1.025<τ <1.03
and the cholesteric-paranematic (Ch+pN) phase separations
at τ < 1.025. The N+pN coexistence is known in mixtures
of a nematic liquid crystal and a polymer under external
fields.14 At low polymer concentrations, the stable Ch and
N phases appear. We also have the three phase coexistence
(Ch+N+pN) between Ch, N, and pN phases at T/TCI � 1.025.
As shown in Figs. 1 and 2, the orientational order parameters
in the pN phase have small values.

Figure 6 shows the phase diagram on the temperature-
concentration plane for εx = 0.2 and nP = 10 with hL
= 0.014. On increasing the strength (hL) of the external field,
the CNT temperature shifts to lower temperatures and the ne-
matic phase appears on a broad region between the pN and
Ch phases. We have the N+pN and Ch+N phase separations.
At τ � 0.87, we find three-phase coexistence (Ch+N+pN)
between Ch, N, and pN phases. As shown in Figs. 1 and 2,
the orientational order parameters jump at the NpNT and the
pitch become infinity at the CNT.

Figure 7 shows the phase diagram on the temperature-
concentration plane for εx = 0.2 and nP = 20 with hL = 0.014.
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FIG. 7. Phase diagram on the temperature-concentration plane for εx = 0.2
and nP = 20 in the presence of an external field hL = 0.014.
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FIG. 8. Phase diagram on the temperature-concentration plane for εx = 0.2
and nP = 50 in the presence of an external field hL = 0.014.

On increasing the molecular weight of the polymer nP, the
anisotropic coupling between a polymer and a liquid crys-
tal becomes strong and the NpNT line shifts to higher tem-
peratures and we have broad biphasic regions, compared to
nP = 10 (see Fig. 6).

Further increasing the molecular weight of the polymer,
the phase behavior is drastically changed. Figure 8 shows the
phase diagram on the temperature-concentration plane for εx
= 0.2 and nP = 50 with hL = 0.014. We find that the NpNT
temperature increases from τ = 1.03 with increasing φP and
the pN+N phase separation appears. The NpNT line termi-
nates at a critical point (closed circle), where the orienta-
tional order parameters are continuously changed (see Fig. 9).
The nematic phase is stabilized by the anisotropic coupling
between a polymer and a liquid crystal in the presence of
the external field. At high concentrations, the NpNT line
with a critical point decreases with increasing φP and the
(pN+N) phase separations appears. At the lower temperatures
of the N phase, we have the phase separation between two ne-
matic phases (N1+N2) with different polymer concentrations
and Ch+N phase separation. We also find the triple point at
τ � 0.89, where three phases (Ch+N1+N2) coexist. On de-
creasing the strength of the external field hL, the CNT line
moves to upward and merges into the NpNT line (see Fig. 5).
When hL = 0, the nematic phase and critical points disappear
and we only have a cholesteric and an isotropic phases, as
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FIG. 9. The average orientational order parameter S(= SPφP + SLφL) plotted
against φP for various temperatures near the critical points in Fig. 8. The
closed circles show critical points.
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FIG. 10. Phase diagram on the temperature-concentration plane for εx = 0.6
and nP = 20 in the presence of an external field hL = 0.014. The open circle
shows critical end point.

shown in Fig. 9 of the previous paper.35 When the anisotropic
coupling εn between a polymer and a liquid crystal is zero,
the NpNT temperature decreases with increasing the polymer
concentration (see Figs. 5–7) and the critical points disappear.

Figure 9 shows the average orientational order parameter
S(= SPφP + SLφL) plotted against φP for various tempera-
tures near the critical points in Fig. 8. Below τ < 1.1, the or-
der parameter jumps at the two NpNT concentrations and has
a maximum between them. At τ = 1.1, we have two critical
points, where the order parameter continuously changes as a
function of φP and temperature.

When the chiral coupling (εx) between a polymer and a
liquid crystal is strong, a cholesteric phase becomes stable
at higher temperatures. Figure 10 shows the phase diagram
on the temperature-concentration plane for εx = 0.6 and nP
= 20 with hL = 0.014. As compared with Fig. 7, the CNT line
shifts to higher temperatures and has a maximum as a func-
tion of φP. The CNT and NpNT lines meet at a critical end
point (CE), which is indicated by the open circle. Such CE has
been theoretically predicted in cholesteric liquid crystals.24

Below CE temperature we find the first-order cholesteric-
paranematic transition (CpNT) inside the binodal lines. We
find the chiral coupling between components strongly affects
the CNT.

Our theory demonstrates that the phase behaviors in bi-
nary mixtures of a polymer and a cholesteric liquid crystal
strongly depend on the external fields. When hL = 0, we
only have the coexistence region Ch+I on the temperature-
concentration plane, although, we find various phase separa-
tions in the presence of external fields. The CNT and NpNT
can be controlled by the strength of the external field and the
molecular weight of a polymer.

IV. SUMMARY

We have presented a mean field theory to describe phase
behaviors in binary mixtures of a polymer and a cholesteric
liquid crystal in the presence of an external magnetic or elec-
tric field.35 We have calculated the orientational order pa-
rameters, the pitch of the cholesteric phase, the critical fields
for twist-untwist transitions, and the phase diagrams on the
temperature-concentration plane. It is found that in the pres-

ence of the external field the CNT and NpNT take place in the
mixtures, depending on temperature and concentration. The
CNT exists at lower temperatures and at lower concentrations
of the NpNT line. On increasing the strength of the external
field, the CNT temperature shifts to lower temperatures and
the nematic phase appears between the pN and Ch phases.

In the presence of the external field, we find the various
phase separations: Ch+pN, N+pN, N1+N2, and Ch+N, al-
though we only have the Ch+I coexistence in the absence of
the external field. It is also found the triple point where three
phases Ch+N+pN coexist. Due to the anisotropic coupling
between a polymer and a liquid crystal, the phase behaviors
drastically change depending on the length of a polymer. For
the strong coupling, the critical point appears at the end of
the NpNT curves. We demonstrate that a strong coupling be-
tween a polymer and a liquid crystal under the external field
takes place various phase separations.

Our theory takes into account both orientational order pa-
rameters SP and SL. For mixtures of a liquid crystal and a flex-
ible polymer chain,16 we can take SP = 0: νLP = 0 and cLP
= 0. In this paper, we did not show the phase diagrams for the
mixtures of a cholesteric liquid crystal and a flexible poly-
mer, however, the phase diagrams calculated with SP = 0 are
qualitatively the same as Figs. 5 and 6.45

Field-induced cholesteric-nematic phase transitions have
been observed in a mixtures of cholesterol chloride,
nonanoate, and oleyl carbonate at a field of 3–5× 105 V/m.5 It
has been shown that CNT temperature decreases with increas-
ing the applied field and a nematic phase appears for wide
temperature ranges. Our results of the CNT lines are con-
sistent with these experimental results. Although the phase
diagrams calculated in this paper have not been experimen-
tally observed yet, we believe that mixtures of a polymer and
a cholesteric liquid crystal under an external field have var-
ious phase separations and provide novel materials for liq-
uid crystalline composites and biological liquid crystals.46, 47

The problems of the boundary conditions in a cell of finite
thickness26 can also be important in these mixtures.
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APPENDIX: MIXTURES OF A NEMATIC LIQUID
CRYSTAL AND A CHIRAL DOPANT

When ULL, 1 = 0 in Eq. (4), or cLL = 0 in Eq. (13), our
theory can describe mixtures of a non-chiral nematic liquid
crystal (i = L) and a chiral dopant (i = P). In this appendix, we
focus on the critical value of the external field. The cholesteric
pitch (Q∗) in the absence of the external field, Eq. (14), is
given as a function of the volume fraction φP of the chiral
dopant

Q∗ =
2εnαx

(
S

P

S
L

)
φP

1 −
[
1 − 2εn

(
S

P

S
L

)]
φP

, (A1)
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and we also have Eq. (28)

Q∗
1 =

2εnαx

(
S

P

S
L

)
φP

1 −
[
1 − εn

(
S

P

S
L

)]
φP

, (A2)

where αx(≡ cLP/νLP) shows the chiral coupling between a liq-
uid crystal and a dopant (εnαx = cLP/νLL). The critical field
hc

L is given by Eq. (46).
When φP 	 1, Eq. (A1) is given by

Q∗ � HT P φP , (A3)

where

HT P ≡ 2εnαx

SP

SL

(A4)

is called the helical twisting power of a chiral dopant.1, 35, 41

The larger values of HTP correspond to the smaller pitch. For
HTP > 0, the wave number Q∗ of the twist pitch linearly in-
creases with increasing φP at dilute solutions, consisting with
the experiments.41–44 The temperature and concentration de-
pendences of HTP are given through the ratio SP/SL. Some es-
timations of the parameters have been studied in our previ-
ous paper.35 Using Eq. (A3), the critical field (46) is approxi-
mately given by

Hc � π

2
HT P φP

√
K22


χL

, (A5)

which is a linear function of φP with SL � 1. Our theory is in
agreement with the experimental results.6, 9 The critical field
increases with increasing the helical twisting power and the
twist elastic constant.
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