
Nematic Ordering in Mixtures of Polymers

and Liquid Crystals

Akihiko Matsuyama∗

(Department of Chemistry for Materials)

(Received August 30, 2002)

Abstract

We review our recent theoretical works on the phase ordering in mixtures of
polymers and liquid crystals. A mean field theory is introduced to describe nematic-
isotropic phase transitions and phase separations in binary mixtures of a low-molecular
weight liquid crystal molecule and a polymer chain which has various degrees of flex-
ibility. We calculate the phase diagrams on the temperature-concentration plane,
depending on the stiffness of polymer chains and the strength of anisotropic interac-
tions between rigid molecules. We also study spinodal decomposition (SD) in poly-
mer/liquid crystal mixtures by solving linearized time-dependent Landau-Ginzburg
equations for concentration (conserved order parameter) and orientation (noncon-
served order parameter). We find a new SD process driven by instability of the
orientational order parameter. The simulations in two dimension are consistent with
the analytical results.

Keywords: polymer dispersed liquid crystals, phase separations, spinodal decompositions, nematic-
isotropic phase transitions

1 Introduction

Mesomorphic mixtures comprising of polymers and liquid crystal molecules (so called polymer

dispersed liquid crystals: PDLC) are of interest because of their important technological appli-
cations in high modulus fibers, nonlinear optics, and electro-optical devises. The performances
of these systems are closely related to a chain extension in a liquid crystal phase and phase
separations[1]. Low-molecular weight liquid crystals are modeled as rigid rodlike molecules. On
the other hand, polymer chains have the variety of their stiffness and so when the polymer chains
are mixed with the liquid crystal molecules we can expect various types of phase diagrams de-
pending on the stiffness of the polymer chain.

In mixtures of a flexible polymer and a liquid crystal, broad biphasic regions between an
isotropic phase and a nematic phase appear below the nematic-isotopic transition (NIT) temper-
ature of the pure liquid crystal molecule. The liquid crystalline phases are destroyed as increasing
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the polymer concentration. These nematic-isotropic phase separations have been investigated
both experimentally[2-8] and theoretically[8-14]. In contrast, mixtures of a liquid crystalline
polymer and a liquid crystal have good miscibility even at a liquid crystalline phase[15]. In these
systems it is important to consider the co-occurrences of orientational ordering of the polymer
chain and phase separations[16-19].

In this review we introduce a mean field theory to describe phase behaviors in binary mixtures
of a liquid crystal molecule and a polymer chain which has various degrees of flexibility. We
calculate the phase diagrams on the temperature-concentration plane. We also study the phase
separation dynamics (spinodal decompositions) by solving linearized time-dependent Landau-
Ginzburg equations for concentration (conserved order parameter) and orientation (nonconserved
order parameter) and show simulations in two dimensions.

2 Free Energy for Mixtures of a Polymer and a Liquid

Crystal

Consider binary mixtures of a non-nematic polymer and a liquid crystal (nematogen). The
polymers and liquid crystals interact through orientational dependent van der waals interactions
and excluded volume interactions. We here assume that the two neighboring bonds on the
polymer chains have either bent or straightened conformations[20, 21] and the conformational
energy of the straightened bond is |ε0| less than that of the bent bonds. The straightened state
of the bonds on the chains is energetically favored and, however, it is entropically unfavorable.
The nematic behaviors of the straightened bonds as well as liquid crystals can be induced by the
anisotropic interactions. To describe the nematic-isotropic phase transition and phase separations,
we consider thermodynamics of our systems. Hereafter we refer the segments in straightened
bonds as ”rigid” segments.

Let Np and N` be the number of the polymers and the liquid crystal molecules, respectively.
Let np be the number of segments on the polymer and n` be that of the liquid crystal. The total
lattice sites of our systems is given by Nt = n`N` +npNp and φ = npNp/Nt is the volume fraction
of the polymer chains. The volume fraction of the liquid crystals is given by φ` = 1−φ. The free
energy of our systems can be given by

F = Fbent + Fmix + Fnem. (1)

The first term shows the free energy change needed to straighten bent bonds on the polymers
and is given by[21, 22]

βFbent = Np

[

nr(βf0) − Scomb/kB − ∆Sconf/kB

]

, (2)

where β ≡ 1/kBT , T is the absolute temperature, kB is the Boltzmann constant, f0 is the
local free energy difference between the bent and straightened conformations, and nr shows the
number of the rigid segments on the polymer chain. We here assume that each chain has the
same conformation. The second term in Eq. (2) is the combinatorial entropy related to the
number of ways to select nr rigid segments out of the np segments on the polymer and is given
Scomb/kB = −np[x lnx + (1 − x) ln(1 − x)], where x(≡ nr/np) shows the fraction of the rigid
segments on the polymer chain. The volume fraction φr of the rigid (straightened) segments on
the polymer chain is given by φr = nrNp/Nt = xφ. The third term in Eq. (2) shows the change
in conformational entropy to bring a chain from a crystalline (straightened) state to a flexible
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amorphous state. According to the Flory’s lattice theory, the conformational entropy Sconf (n)
of the polymer chain with n flexible segments is given by entropy of disorientation[23]. When
the nr segments out of the np segments on a polymer chain are replaced by rigid segments, the
conformational entropy change ∆Sconf is given by ∆Sconf = Sconf (np − nr) − Sconf (np).

The second term in Eq. (1) is the free energy of the isotropic mixing for the polymers and
liquid crystals. According to the Flory theory, the free energy is given by[23]

βFmix/Nt =
1 − φ

n`
ln(1 − φ) +

φ

np
ln φ + χφ(1 − φ), (3)

where χ(≡ U0/kBT ) is the Flory-Huggins interaction parameter related to the isotropic van der
waals interactions between unlike molecular species.[23]

The third term in Eq. (1) shows the free energy for the nematic ordering. On the basis of
both the Maier-Saupe model[24, 25] for orientational dependent-attractive interactions and the
Onsager model[26] for excluded volume interactions, the free energy of the nematic ordering is
given by

βFnem/Nt =
1 − φ

n`

∫

f`(θ) ln 4πf`(θ)dΩ +
φr

nr

∫

fr(θ) ln 4πfr(θ)dΩ −
1

2
ν``S

2

` (1 − φ)2

−ν`rS`Sr(1 − φ)φr + (ρ`` − 1)(1 − φ)2 + 2(ρ`r − 1)(1 − φ)φr, (4)

where dΩ ≡ 2π sin θdθ, θ is the angle between the rigid segments and the director of the orienting
field. The ν`` shows the orientational dependent (Maier-Saupe) interactions between the liquid
crystals, ν`r is that between the liquid crystal and the rigid segment on the polymer chains.
We here focus on the nonnematic polymer and so we can neglect the terms of the anisotropic
interaction νrr and the excluded volume interaction ρrr between rigid segments on the polymer
chain in Eq. (4). The f`(θ) and fr(θ) show the orientational distribution functions of the liquid
crystals and that of the rigid segments on the polymers, respectively. The scalar orientational
order parameter S` of the liquid crystals and that Sr of the rigid segments on the polymer is
given by

Si =

∫

P2(cos θ)fi(θ)dΩ, (5)

i = `, r. where P2(cos θ) ≡ 3(cos2 θ−1/3)/2. The last two terms in Eq. (4) show the excluded vol-
ume interactions and the function ρij (i, j = `, r) is given by ρij = 4

π

∫∫

sin γ(θ, θ′)fi(θ)fj(θ
′)dΩdΩ′.

In the isotropic phase, we have fi(θ) = 1/(4π) and ρij = 1[26].
The orientational distribution function f`(θ) of the liquid crystals and fr(θ) of the rigid seg-

ments on the polymer are determined by the free energy (4) with respect to these functions:
(∂Fnem/∂fi(θ))x,fj

= 0, under the normalization conditions
∫

fi(θ)dΩ = 1. In the framework of
our mean field approximations[21], we obtain the distribution function:

fi(θ) =
1

Zi
exp[ηiP2(cos θ)], (6)

η` ≡ n`

[

(ν`` +
5

4
)S`(1 − φ) + (ν`r +

5

4
)Srxφ

]

, (7)

ηr ≡ npx(ν`r +
5

4
)S`(1 − φ), (8)

where the constants Zi (i = `, r) are determined by the normalization condition as Zi = 2πI0[ηi],
where the function I0[ηi] is defined as

Im[ηi] ≡

∫

1

0

[

P2(cos θ)
]m

exp
[

ηiP2(cos θ)
]

d(cos θ), (9)
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m = 0, 1, 2, · · · . Substituting Eq. (6) into (5), we obtain two self-consistency equations for the
two order parameters S` and Sr:

Si = I1[ηi]/I0[ηi], (10)

and the average value of the order parameters is given by S = S`(1 − φ) + Srφr.
The fraction x of the rigid segments on the polymer chain is determined by minimizing the free

energy (1) with respect to x: (∂F/∂x)S`,Sr = 0. This yields

Sr = D(x)/[(ν`r +
5

4
)S`(1 − φ)], (11)

D(x) ≡

[

ln
[ x

(1 − x)λ

]

+
1

np(1 − x)

]

, (12)

and λ ≡ (e/(z−1)) exp(−βf0), where z is the coordination number of a quasilattice[21]. By solving
the coupled equations (10) and (11), we can obtain the values of the two order parameters S`,
Sr, and the fraction x of the rigid segments on the polymer chain as a function of temperature
and concentration.

In our numerical calculations, we further split the local free energy difference f0 in Eq. (2)
into two parts: f0 = ε0 − Ts0, where s0(= kB ln ω0) is the local entropy loss which is given by
ω0 = 1/(z − 2) [20] and ε0(< 0) is the energy change needed to straighten a bent bond. Then we
obtain λ = ω exp(−βε0), where ω ≡ e/[(z − 1)(z − 2)]. The stiffness of the polymer is controlled
by the ε0. The larger values of ε0 correspond to the stiffer polymers. The most flexible polymer
chain is realized when ε0 = 0. The coexistence curve (binodal) and the spinodal line of the phase
diagram can be calculated by the chemical potentials[21]. The anisotropic interaction parameter
ν`` between liquid crystals is given to be inversely proportional to temperature: ν`` = Ua/kBT [25].
We also define the dimensionless nematic interaction parameter α ≡ ν``/χ = Ua/U0, the stiffness
parameter ε ≡ |ε0|/Ua of a polymer chain and c ≡ ν`r/ν``.

3 Phase Diagrams

3.1 Mixtures of a flexible polymer and a liquid crystals

When the polymer chain is sufficiently flexible, we can assume that Sr = 0, ε = 0, and ν`r = 0.
The theory results in that for mixtures of a flexible polymer and a liquid crystals[14].

Figure 1(a) shows the binodal curve for α = 2.5, nr = 2.The temperature is normalized by
the NIT temperature TL

NI of the pure nematogen. The number np of segments on a polymer
chain is changed. For low molecular weight polymers, the biphasic region between the nematic
and isotropic phases (N+I) appears at lower temperatures. The stable nematic phase appears
in a dilute region of the polymer concentration. The nematic phase consists almost of pure
nematogens and the coexisting isotropic phase consists of nematogens and flexible polymers. For
larger values of np, we have the isotopic-isotropic (I+I) phase separation with an upper critical
solution temperature (UCST) such as observed for polystylene with 7CB[5]. We also find the
three phase equilibrium (triple point: TP) where two isotropic phases and a nematic phase can
simultaneously coexist. At high temperatures, the system is in isotropic phase (I) because the
entropy of mixing is dominant. As decreasing temperature, the I+I phase separation takes place
where χ parameter becomes dominant. Further decreasing temperature, the attractive interaction
ν`` between nematogens dominates and the N+I phase separation occurs at the lower temperature
side of the TP.
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Fig. 1: (a) The binodal curves for α = 2.5, nr = 2. The temperature is normalized by the NIT

temperature TL
NI of a pure liquid crystal. The number np of segments on a polymer chain is

changed. (b) The binodal curves for α = 5, nr = 2. When the nematic interaction parameter α is

increased, the isotropic-isotropic phase separation disappears and we have the nematic-isotropic

phase separation

Figure 1(b) shows the phase diagram for α = 5 and nr = 2. The number np of segments on
a polymer is changed. When the nematic interaction parameter α is increased, the isotropic-
isotropic phase separation disappears and we only have the nematic-isotropic phase separation.
The width of the two phase region increases with increasing np. The type of phase diagram is
characterized by the nematic interaction parameter α[14, 27].

3.2 Induced-nematic phase

In the following calculations we use α = 5, ε = 3, ω = 0.025 and c = 1 for a typical example[21].
Figure 2 shows the phase diagram on the temperature-concentration plane for n` = 2. The
number np of segments on the polymer is changed from (a) to (b): (a) np = 10; (b) np = 50. The
temperature is normalized by the NIT temperature TL

NI of the pure liquid crystal molecule. The
solid curve is referred to the binodal and the dashed and dotted line shows the spinodal. The
short-dashed lines show the NIT line. In the phase diagram, we have two different metastable
regions: an isotropic metastable (Im); a nematic metastable (Nm). We also have a nematic
unstable region (Nu). As shown in Fig. 2 (a), at higher temperatures we have the two-phase
coexistence (N1+I) region between the nematic and the isotropic phase, which was observed in
the mixtures of polystyrene (PS) with (p-ethoxybenzylidene)-p-n-butylaniline (EBBA)[2, 3]. The
nematic phase (N1) almost consists of the pure liquid crystals and is stabilized by orientational
ordering of the liquid crystals. As decreasing temperature, we find a triple point (three phase
equilibrium) where the two nematic phases and an isotropic phase can simultaneously coexist
(N1+N2+I). At the lower temperature side of the triple point, a new stable nematic phase (N2)
is induced by the anisotropic coupling between polymers and liquid crystals. This induced nematic
phase (N2) is stabilized by the orientational ordering of both polymer chains and liquid crystals.
We also find the (N1+N2) and (N2+I) coexistence regions. As increasing the polymer length np,
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Fig. 2: Phase diagram on the temperature-concentration plane for n` = 2. The number np of

segments on the polymer is changed from (a) to (b): (a) np = 10; (b) np = 50.

the induced nematic phase (N2) shifts to higher temperatures due to the correlation between the
two neighboring bonds along the polymer chain. In Fig. 2(b), we also find the azeotrope point at
which two equilibrium nematic and isotropic phases have the same composition. We predict that
the partial orientational ordering of polymers by liquid crystal solvents can give rise to a new
stable nematic phase (induced-nematic phase), depending on the polymer length and the stiffness
of the polymer chain.

4 Phase Separation Dynamics

In this section, we study spinodal decompositions in mixtures of a flexible polymer and liquid
crystals. In these mixtures, as shown in Fig.1, biphasic regions between an isotropic and a nematic
phase appear below the NIT temperature of the pure liquid crystal molecule. When the system
is thermally quenched from a stable isotropic phase into an unstable part of the biphasic region,
the fluctuations of concentration and of orientation take place and isotropic or nematic droplets
appear with time[28-30]. The instability of these systems is driven by the competition between
phase separation and nematic ordering.

To elucidate the time evolution of the concentration and orientation fluctuations during the
spinodal decomposition, we calculate structure factor for concentration and for orientation using
time-dependent Landau-Ginzburg (TDLG) equations for concentration and orientational order
parameters[31]. We also show simulations in two dimension (but without linearization) to further
understand our analytical results for the structure factors.

4.1 Kinetic equations

We consider mixtures of a flexible polymer and liquid crystal (nematogen) described by one
conserved order parameter (volume fraction φ of nematogen) and one nonconserved order pa-
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rameter (orientational order parameter Sij of nematogens)[31-36]. Since the orientational order
parameter is a traceless symmetric tensor, its components can be expressed as[25]

Sij =
d

2
S(r)

[

ni(r)nj(r) −
1

d
δij

]

, (13)

where i, j = x, y, z denote the components along three orthogonal coordinate axes, d is the
space dimension, n(r) is a local director, δij is the Kronecker δ function, and S(r) is the scalar
orientational order parameter referred to previously. The dynamics of the mixture is described
by the coupled time-dependent Ginzburg-Landau equations[33-36] for the two order parameters.
In the inhomogeneous system under nonequilibrium conditions, spatial variations occur in the
two order parameters. The total free energy (F ) can be expressed in terms of a local bulk free
energy density f(φ, Sij) and the gradients of the two order parameters[31]:

F [φ, Sij ] =

∫

dr

[

f(φ, Sij) +
K0

2
(∇φ)2 + L0(∂iφ)(∂jSij)

+
L1

2
(∂kSij)

2 +
L2

2
(∂iSik)(∂jSjk)

]

, (14)

where the free energy F and f are dimensionless quantities (divided by kBT ), T is the absolute
temperature, kB is the Boltzmann constant and K0, L0, L1, L2 are phenomenological coefficients
derived from a mean field theory[33, 34]. In this paper we take these coefficients as constant. The
bulk free energy density is given by[31]

f(φ, Sij) =
1 − φ

np
ln(1 − φ) +

φ

nl
ln φ + χφ(1 − φ)

+
1

2
A(φ)SijSji −

1

3
B(φ)SijSjkSki +

1

4
C(φ)SijSjkSklSli, (15)

where the coefficients A(φ), B(φ), and C(φ) are given as a function of temparature and concentration[31].
In considering the nonequilibrium equations of motion for our system, we adopt a thermody-

namic point of view. The phenomenological equation of motion for the concentration φ, which
ensures local conservation of material, is given by[37]:

∂φ(r, t)

∂t
= Γφ∇

2
(δF

δφ

)

= Γφ∇
2

[

∂f

∂φ
− K0∇

2φ − L0∂i∂jSij

]

, (16)

where the thermodynamic force which drives the flux is given by the gradient of the chemical
potential µ = δF/δφ and Γφ is the mobility, assumed constant. On the other hand, for the
nonconserved order parameter Sij , we take the local rate of change to be linearly proportional to
the local thermodynamic force ∂F/∂Sij[37]. The equation of motion for Sij is then given by

∂Sij(r, t)

∂t
= −ΓS

( δF

δSij
+ Λ(r, t)δij

)

= −ΓS

[

∂f

∂Sij
− L0∂i∂jφ − L1∇

2Sij

−
L2

2
(∂i∂kSkj + ∂j∂kSki) + Λ(r, t)δij

]

, (17)



Res. Rep. Fac. Eng. Mie Univ., Vol. 27, pp.9-22(2002) 16

where the transport coefficients Γφ and ΓS are taken as constant. The kinetic equations could in
principle be made more general, by writing the Onsager coefficient Γ as a matrix. This would allow
one order parameter to be driven by gradients in the chemical potential of the other[33]. However,
as this is not the phenomenon under investigation, we set the off-diagonal matrix elements to zero
for simplicity. The orientational order parameter evolves in such a way as to lower the free energy,
but it must do so subject to the constraint that it remains traceless. The Lagrange multiplier Λ
in Eq.(17) will be chosen to ensure conservation of the trace of Sij.

By linearizing Eqs. (16) and (17)[31], we can calculate the structure factor for concentration:

Sφ(q, t) ≡ 〈|δφ(q, t)|2〉, (18)

and that for the component Szz of the orientational order parameter: given by

SS(q, t) ≡ 〈|δSzz(q, t)|
2〉, (19)

where q is the wave number in the Fourier space and we define a z axis parallel to the director.

4.2 Spinodal decompositions

0.4 0.6 0.8 1
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/ T

N
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Fig. 3: Phase diagram of a polymer/liquid crystal mixture with np = nl = 2 and ν/χ = 1.4. The

solid curve refers to the binodal and the dotted line shows the first-order NIT line. The dash-

dotted line shows the spinodal. Closed circles indicate temperature quenches from the stable

isotropic phase into the isotropic unstable (Iu; A) and nematic unstable (Nu;B, C) regions.

A typical phase diagram on the temperature-concentration plane is shown in Fig. 3 which is
calculated with np = nl = 2 and ν/χ = 1.4 in Eq. (15)[14]. The reduced temperature τ(≡ T/TL

NI)
is normalized by the nematic-isotropic transition (NIT) temperature TL

NI of the pure liquid crystal
(at φ = 1). The critical solution point in the isotropic phase is at φ = 0.5 and τ = 0.95. The
solid curve refers to the binodal and the dotted line shows the first-order NIT of a hypothetical
homogeneous phase. The dash-dotted line shows the spinodal. Note that the origin is suppressed
on the φ-axis. When τ = 0.831, we have a triple point where two isotropic liquid phases (L1 +L2)
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and a nematic phase (N) can simultaneously coexist. Below the triple point, we have the two-
phase coexistence between an isotropic and a nematic phase. Such phase diagrams are observed
in mixtures of n-tetracosane and nematic liquid crystal (PAA)[4]. In the biphasic region between
the nematic and the isotropic phases, we have two different metastable regions: an isotropic
metastable (Im) and a nematic metastable (Nm), and two unstable regions: an isotropic unstable
(Iu; A) and a nematic unstable (Nu; B,C)[8, 13, 14]. On increasing the molecular weight np of
the polymer, the critical solution point shifts to higher temperatures and higher concentrations of
mesogens and the Nu and Iu regions also shift to higher temperatures and higher concentrations
with increasing np[8, 13, 14].

Filled circles indicate temperature quenches from the stable isotropic phase into the isotropic
unstable (Iu;A) and nematic unstable (Nu;B, C) regions. The region (A), lying below the isotropic
spinodal curve and above the NIT line, corresponds to a system which is initially unstable with
respect to concentration fluctuations, but metastable to orientation fluctuations. The region (B),
between the isotropic spinodal curve and the NIT line, is initially unstable to both concentration
and orientation fluctuations. In the region (C) between the isotropic spinodal curve and the
nematic spinodal curve, the system is initially unstable with respect to orientation fluctuations,
but metastable to concentration fluctuations. Thus if we thermally quench from an isotropic
phase to these different regions, we can expect a variety of SD processes even in the early stages.

q q

Fig. 4: Temporal evolution of the compositional structure factor (a) Sφ and of the orientational

structure factor (b) SS , for the temperature quench into the Iu region A (τ = 0.6, φ = 0.55) in

Fig. 3

Figure 4 shows the temporal evolution of the compositional structure factor Sφ and of the
orientational structure factor SS , respectively, for the temperature quench into the Iu region
(τ = 0.6, φ = 0.55) in Fig. 3. The structure factor for concentration has a maximum at qm

which corresponds to the peak wave number of the growth rate[31]. With time the corresponding
mode grows exponentially and the peak position qm is invariant. The time evolution of the
structure factor Sφ is the same as that of the Cahn theory for isotropic SD[38, 37]. The structure
factor SS decreases with increasing q at very early times. The amplitude of the peak at q = 0
decreases with time because fSS ≡ (∂2f/∂S2) > 0. With time another peak appears in the SS

curve, corresponding to the peak at qm, and the orientation fluctuation grows exponentially. In
this quench, the concentration fluctuation initially induces the SD and the orientational ordering
within the domains subsequently takes place due to the coupling between the two order parameters
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as time progresses. Further increasing the initial concentration of mesogen, the orientational

q q

Fig. 5: Temporal evolution of the compositional structure factor (a) Sφ and of the orientational

structure factor (b) SS , for the temperature quench into the Nu region C (τ = 0.6, φ = 0.85) in

Fig. 3

2.01.51.00.5
-0.50

-0.40

-0.30

-0.20

-0.10

0.00

0.10

log(t)

0.55
0.72

0.77

0.78

0.79
0.8

0.85

φ =

-1/2

-1/3lo
g(

q 
   

)

τ=0.6

m

Fig. 6: Temporal evolutions of the scattering wave number qm at which the compositional struc-

ture factor has a maximum. The initial concentration is varied at fixed τ .

fluctuation becomes dominant. Figure 5 shows the temporal evolutions of the structure factors
for a temperature quench into the Nu region (C) (τ = 0.6, φ = 0.85), where the system is
initially unstable with respect to orientational order parameter (fSS < 0) and metastable with
respect to concentration (fφφ ≡ (∂2f/∂φ2) > 0). In the very early stages, the concentration
fluctuation becomes weak with time because fφφ > 0. However the orientational fluctuations
grow exponentially with time because fSS < 0. Further increasing time, a peak in Sφ appears
and shifts to lower values of the wave number. There is no longer any time stage in which the
peak position in Sφ is invariant, which was predicted by Cahn’s linearized theory for isotropic SD
in the early stages[37, 38]. The instability of the orientational ordering initially induces the SD
and the concentration fluctuation is induced by the coupling between the two order parameters.
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To summarize these results of our linearized analysis, we show in Fig. 6 the values of qm for the
density structure factor Sφ for various initial concentrations φ0. In the Iu region A, the peak wave
number qm is invariant during the early stages of the SD. On increasing the initial concentration,
we find that the scattering peak shifts to the lower values with time. When φ0 = 0.85 (region C),
the scattering peak for Sφ changes as t−1/3 (the average domain size increases as t1/3 even in the
early stages). The instability of the orientational ordering induces the concentration fluctuation
through the coupling between two order parameters.

4.3 Simulations in two dimensions

S

t=6.0

φ

10.0 15.0 50.0

Fig. 7: Time evolution of the compositional (upper) and orientational (lower) order parameters

for the temperature quench (τ = 0.6, φ0 = 0.35) in Fig. 3.

To further understand our analytical results, nonlinear coupled differential equations (16,17)
were simulated in two spatial dimensions (x, y) with periodic boundary conditions. In the two
dimensions, we have, with the constraints Tr Sii = 0 and Sij = Sji, a set of two coupled nonlinear
partial derivative equations describing the spatiotemporal evolutions of the tensor components Sxx

and Sxy in Eq. (17) and the scalar orientational order parameter is given by S = 2
√

S2
xx + S2

xy.

The time step and grid spacing are ∆t = 0.0001 and ∆h = 0.3 respectively and 128 grid points
were used. The initial conditions for the concentration φ(x, y) and the tensor order parameters
Sij(x, y) at each lattice point are given by random numbers distributed uniformly in φ(x, y) =
φ0 ± 0.02 and Sij(x, y) = ±0.02, respectively. Initially, the system is in an isotropic phase. We
neglect the random noise terms in the kinetic equations and believe no significant effects on the
phase separation dynamics. Figures 7, 8, and 9 show the results of simulations for temperature
quenches from the isotropic state to τ = 0.6 with φ0 = 0.35, φ0 = 0.55, and φ0 = 0.85, respectively.
The upper(lower) figures show the temporal evolution of the concentration (scalar orientation
order parameter). The darkness is proportional to the value of φ and S. In region A, at φ0 = 0.33
[Fig. 7] and φ0 = 0.55 [Fig. 8] , we first observe the concentration fluctuation in the early
stage and the nematogen-rich isotropic droplets appear in a polymer-rich matrix. With time the
concentration fluctuation and the orientational fluctuation within the droplets grow and form
nematic droplets [Fig. 7] or bicontinuous networks of interconnected domains[Fig. 8].

In the case of φ0 = 0.85 [region C, Fig. 9], we first observe the orientation fluctuations in
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t=4.0 6.0 10.0 30.0

φ

S

Fig. 8: Time evolution of the compositional (upper) and orientational (lower) order parameters

for the temperature quench (τ = 0.6, φ0 = 0.55) in Fig. 3.

the very early stage (t = 0.2), but the system is still in an isotropic state. As time increases,
the orientation fluctuations become large and induce concentration fluctuations. We find the
polymer-rich isotropic region (white areas) form a fibrillar network morphology in a nematogen-
rich nematic matrix (t ∼ 1.0). Further increasing time, these networks break up (t = 1.4) and
form polymer-rich isotropic droplets (t = 12.4). At late stages (t = 12.4), the droplets becomes
noncircular in the surrounding nematogen-rich nematic phase. The nematic ordering can signifi-
cantly influence domain morphology. These simulations show how the phase separation dynamics
in polymer/liquid crystal mixtures is driven by the competition between phase separation and
nematic ordering. On increasing the concentration of liquid crystal, the instability of the orien-
tational ordering becomes dominant and the mechanism (or morphology) of the SD is changed
from concentration fluctuation-induced SD to orientation fluctuation-induced SD. The cross term
between gradients plays a significant role in the early stage SD.

t=0.2 1.0 1.4 12.4 50.0

φ

S

Fig. 9: Time evolution of the compositional (upper) and orientational (lower) order parameters

for the temperature quench (τ = 0.6, φ0 = 0.85) in Fig. 3.
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5 Summary

In this review, we have theoretically studied the phase behaviors and phase separation dy-
namics in mixtures of polymers and liquid crystals. The theory can qualitatively describe the
observed phase diagrams. We predict that the partial orientational ordering of polymers by liquid
crystal solvents can give rise to a new stable nematic phase (induced nematic phase), depending
on the polymer length and the stiffness of the polymer chain. These phase behaviors will be useful
for further studies for the polymer dispersed liquid crystals and the investigations of intermolec-
ular interactions, association phenomena, and dipole-dipole correlations between polymers and
liquid crystals. Though we have performed a linear analysis of the spinodal decompositions in
polymer/liquid crystal mixtures, these results will also be an useful to understand other nematic
systems including semiflexible polymer, liquid crystalline polymers, and rodlike colloids[39-42].
The nematic ordering can significantly influence domain morphology.

Finally, volume phase transitions of a liquid crystalline gel immersed in a nematogen [43, 44]
are also closely related to the phase separations stated in this review.
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