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We present a mean field theory to describe twist-bend nematic (NTB) phases in binary mix-
tures of banana-shaped, such as bent-core or dimer, liquid crystalline (LC) molecules with
K22 > K33, where K22 is a twist and K33 is a bend elastic constant. We introduce the free
energy for the mixtures by taking into account the director-pitch (DP) coupling γi of the
consisting LC molecules i(= A,B) and calculate the phase diagrams on the temperature-
concentration plane. Our theory demonstrates that the isotropic (I), or para-nematic (pN),
nematic (N), and NTB phases appear, depending on the strength of the DP coupling param-
eter γi and predicts various phase transitions: the first-order N − pN(I) and NTB − pN(I)
transitions, and the second-order NTB −N transition, etc, on the temperature-concentration
plane. Our theory has a good agreement with the experimental phase diagrams of the mix-
tures.

Keywords: twist-bend nematic; cholesteric; chiral nematic; nematic; banana-shaped
molecules; chirality

1. Introduction

Recently, a new class of nematic (N) phases has been discovered in liquid crystalline
(LC) dimers and bent-core molecules (or banana-shaped molecules). The novel
twist-bend nematic (NTB) phase is an oblique helicoidal structure with a nanoscale
pitch. It has been theoretically predicted almost 50 years ago by Meyer(1), but
only recently was observed experimentally.(2–22) It was first identified for 1, 7-
bis-4-(4-cyanobiphenyl) heptane, CB7CB,(3) and the NTB phase was confirmed
by freeze fracture transmission electron microscopy (FFTEM)(5) , NMR,(6) and
X-ray scattering, etc.(7) After that, many studies have been conducted and the
workshop on the NTB phase has been held in 2016.(23) The research on the NTB

phase is getting active more and more.(24, 25)
The NTB phase in achiral molecules, such as banana-shaped molecules, appears

at the lower temperatures of a N phase(6, 7) and has the same director as an
oblique helicoidal structure, which is induced by electric fields applying parallel to
the pitch axis of a chiral nematic (N∗) phase.(26–28) It has been suggested that the
spontaneous formation of such chiral systems from the achiral LC molecules is due
to the conformational chirality within each molecules.(29–32) The NTB phase is
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Figure 1. (color online) (a) Schematic representation of the director n of the NTB phase with the cone
angle ϵ between the director and the pitch axis direction p//z: p and n are unit vectors parallel to the
local director and to the helical axis, respectively, and the polarizing vector m = p × n. The angle ω is
the azimuthal angle around the z axis. The figure shows one of the two degenerate helicoidal twists (right-
(ω < 0) and left-handed (ω > 0) helices). We have the N∗ phase with ϵ = π/2 and the N phase with ϵ = 0.
When 0 < ϵ < π/2, the NTB appears.(b) Banana-shaped molecule of length L and diameter D with the
molecular orientation vector Ω.

mainly formed in pure LC dimers having odd spacers(3, 7) and in binary mixtures
of LC dimers.(17–22) Recent experiments for the binary mixtures of LC dimers
have shown that the NTB phase is formed directory from an isotropic (I) phase
via a strong first-order phase transition,(20) in which the NTB phase depends on
not only temperature but also concentration. The motivation of this paper is to
theoretically describe these binary mixtures of LC dimers.
In the NTB phase, the director exhibits periodic twist and bend deformations

forming an oblique heliconical helix with doubly degenerate domains having oppo-
site handedness. Figure 1 shows a schematic representation of the director n of the
NTB phase. When the helix axis p is parallel to the z axis, the director is uniformly
twisted along the z axis with the pitch length p = 2π/q, maintaining a constant
cone angle 0 ⩽ ϵ ⩽ π/2 with the helix axis, and is given by

n(z) = (sin ϵ cosω(z), sin ϵ sinω(z), cos ϵ), (1)

where the azimuthal angle ω is given as a function of the position z: ω = qz. The
cone angle ϵ between the director and pitch axes is a constant and does not depend
on the position z. Equation (1) can also describe a N phase when ϵ = 0 and a N∗

phase when ϵ = π/2.
To describe the NTB phase in achiral systems, Dozov(33) has shown that the

bend elastic constant K33 become a negative value in bent-core LC molecules.
Shamid et.al(34, 35) have also found that the bend-polarization coupling leads to
a negative K33. On the other hand, a quadratic elastic theory with a coupling
between a nematic director and an extra director field parallel to the pitch axis
of a NTB phase leads to a non-negative elastic constant.(36–39) These theories
demonstrate that the twist elastic constant K22 is always K22 > K33 to derive
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a stable NTB phase. Molecular field approaches have also been proposed as gen-
eralized Maier-Saupe theory,(40–43) as well as Onsager-like theory.(44) Recently,
we have presented the mean field theory to describe the NTB phase for a pure
banana-shaped molecule, in which we take into account the coupling between the
director and pitch axis: director-pitch (DP) coupling, and described the NTB phase
depending on temperature and the coupling strength.(39) Our theory is consistent
with the elastic theory for the NTB.(36–38) However, the phase diagrams for the
binary mixtures of LC dimers showing the NTB phase have not been theoretically
discussed, yet.
In this paper, we present a mean field theory to describe the NTB phase in

binary mixtures of banana-shaped LC molecules with K22 > K33. Based on our
previous theory(39) of the NTB for a pure LC molecule, we extend it to the binary
mixtures, in which we take into account the DP coupling. We derive the free energy
of the binary mixtures of LC dimers and explore the NTB phase, depending on
temperature and concentration. We calculate the orientational order parameter Si

of the LC molecule i(= A,B) and the order parameter y(≡ sin2 ϵ) of the NTB phase
as a function of the temperature and concentration. We also calculate the phase
diagrams on the temperature-concentration plane, depending on the strength of
the DP coupling, and find a various phase diagrams: the second-order N − NTB

phase transition and the first-order pN(I)−N and pN(I)−NTB phase transitions,
etc. The theory shows good agreements with the experimental phase diagrams.
In Section 2, we introduce the free energy to describe the NTB phase in the

binary mixtures. In Section 3.1, we discuss phase transitions of the NTB phase
in the framework of a Landau expansion in a series of the order parameter y of
the free energy. We show the numerical results of the phase diagrams in Section
3.3 and the comparisons of our theory with the experimental phase diagrams in
Section 3.4.

2. Free energy of a binary mixture of LC molecules with chiral interactions

In this section, we introduce the free energy of a binary mixture of low-molecular
weight LC molecules with chiral interactions.
Consider a binary mixture of LC molecules A and B. Let NA be the number of

the LC molecule A of the length LA and diameter D and NB be the number of
the LC molecule B of the length LB and diameter D. Let χi be the bend angle
between two bent-core mesogens of the molecule i. We assume that the banana-
shaped LC molecule is like a rodlike molecule with the length Li = 2D tan(χi/2)
and the diameter D. We then have the ratio ni ≡ Li/D = 2 tan(χi/2). Note that
we here consider π/2 ≪ χi ≪ π for the bend angle. The volume of the LC molecule
A and that of B are given by vA = a3nA and vB = a3nB, respectively, where we
define a3 ≡ (π/4)D3 ≃ D3. Let ϕA = vANA/V and ϕB = vBNB/V be the volume
fraction of the molecule A and B, respectively, where V is the volume of the system:
ϕA + ϕB = 1.
The free energy of the mixtures consists of the following three terms:

F = Fmix + Fani + Fco. (2)

The first term in Equation (2) is the free energy of mixing for the binary mixture
and can be given by Flory-Huggins theory for polymer blends:(45, 46)

fmix ≡ a3βFmix/V =
ϕA

nA
lnϕA +

ϕB

nB
lnϕB + χFHϕAϕB, (3)
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where χFH is the Flory-Huggins interaction parameter between LC molecules in an
isotropic phase and β ≡ 1/kBT ; T is the absolute temperature, kB is the Boltzmann
constant. In the case of binary mixtures with a good solubility, we can take the
interaction parameter of χFH = 0.
The second term in Equation (2) shows the anisotropic free energy for liquid crys-

talline ordering. The configuration of a constituent molecule is characterized by its
position vector r and its orientation unit vector Ω = (sin θ cosφ, sin θ sinφ, cos θ),
defined by a polar angle θ and an azimuthal angle φ, or solid angle dΩ(= sin θdθdφ),
in a fixed coordinate frame. Let fi(n(r) ·Ω) be the orientational distribution func-
tion of the constituent molecule i(= A,B), where n(r) is the local director. It
should be noted that the distribution function depends only on the relative an-
gle between the local director n(r) and the molecular orientation vector Ω. The
anisotropic part of the free energy in the second virial approximation can be given
by(46)

βFani =
∑

i=A,B

ρi

∫
fi(n(r) ·Ω) ln 4πfi(n(r) ·Ω)drdΩ

+
1

2

∑
i,j=A,B

ρiρj

∫
fi(n(r1) ·Ω1)fj(n(r2) ·Ω2)

×βUij(r1,Ω1; r2,Ω2)dR, (4)

where dR ≡ dr1dr2dΩ1Ω2, ρi = Ni/V is the number density of the LC molecule
i. The first term in Equation (4) shows the entropy changes due to orientational
ordering and Uij is the orientation-dependent intermolecular potential between two
particles i and j (i, j = A,B). The lowest-order contributions to the interaction
potential are given in a series of the Legendre polynomials:(47–52)

Uij(r1,Ω1; r2,Ω2) = Uij,1(r12)(Ω1 ×Ω2 · r̂12)P1(Ω1 ·Ω2)

+Uij,2(r12)P2(Ω1 ·Ω2), (5)

where r12 = r2 − r1 and r̂12(= r12/|r12|) is a unit vector. The potential Uij,1

shows the chiral interaction between LC molecules and the pseudoscalar term
Ω1 × Ω2 · r̂12 represents scalars coupling between orientational and spatial vari-
ables. The potential Uij,2 shows the intermolecular potential for a nematic phase,
which has been used in Maier-Saupe(53) and Onsager models.(54) As usual we
here employ a simple square well interaction potential energy with a short range
d0(≃ D) on the order of the molecule.(51) We then define a numerical parame-
ter cij ≡ −Uij,1/kBT for a chiral pseudoscalar interaction parameter between LC
molecules and νij ≡ −Uij,2/kBT (> 0) for a nematic interaction (or Maier-Saupe)
parameter. The interaction parameter νij > 0 corresponds to the orientational-
dependent (Maier-Saupe) interaction parameter between the LC molecules i and
j. The larger values of νij imply that the two molecules i and j prefer to be parallel
to each other and a N phase tends to be more stable in the mixture. The chiral
interaction parameter cij corresponds to the strength of the chirality between the
LC molecules i and j. The larger values of cij show stronger chirality (or twist in-
teraction) between the LC molecules i and j and a twist distortion, or a N∗ phase,
tends to be more stable in the mixture.
Using the orientational distribution function fi(n(r) ·Ω), the second rank order
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parameter tensor Q(i)
αβ(r) is given by (55)

Q(i)
αβ(r) =

∫
fi(n(r) ·Ω)

(3
2
ΩαΩβ − 1

2
δαβ

)
dΩ

=
⟨3
2
ΩαΩβ − 1

2
δαβ

⟩
, (6)

where Ωα is the Cartesian component of the molecular orientation vector Ω at a
position r and δαβ is the Kronecker delta function.
Using Equation (6), the average over Ω1 and Ω2 in Equation (4) yields(51)

∫∫
fi(n(r1) ·Ω1)fj(n(r2) ·Ω2)(Ω1 ×Ω2 · r̂12)P1(Ω1 ·Ω2)dΩ1dΩ2

=
4

9
ϵαβγ r̂12,αQ

(i)
βµ(r1)Q

(j)
γµ(r2), (7)

and ∫∫
fi(n(r1) ·Ω1)fj(n(r2) ·Ω2)P2(Ω1 ·Ω2)dΩ1dΩ2

=
2

3
Q(i)

αβ(r1)Q
(j)
αβ(r2), (8)

where ϵαβγ is Levi-Civita antisymmetric tensor of the third rank and r̂12,α is the α
component of the unit vector r̂12.
We here assume that the Qαβ(r2) does not change appreciably over the range of

the potential and can be expanded in the Taylor series:

Qαβ(r2) = Qαβ(r1 + r12)

= Qαβ(r1) + rκ∂κQαβ(r1) +
1

2
rκrµ∂κ∂µQαβ(r1), (9)

where rκ ≡ r12,κ is the the κ component of the position vector r12 and ∂µ = ∂/∂µ
is the first spatial derivative of the tensor order parameter (κ, µ = x, y, z).
Substituting Equation (9) into (7) and (8), the anisotropic free energy of the

binary mixtures with chiral interactions can be expressed as(39, 51)

a3βFani/V =
∑

i=A,B

ϕi

ni

∫
fi(n(r) ·Ω) ln 4πfi(n(r) ·Ω)dΩ

+
∑

i,j=A,B

[
− 1

2
νijϕiϕj

2

3
Q(i)

αβ(r)Q
(j)
αβ(r)

+
1

2
νijϕiϕj

1

9
∂µQ(i)

αβ(r)∂µQ
(j)
αβ(r)d

2
0

−1

2
cijϕiϕj

4

9
ϵαβγQ

(i)
µβ(r)∂αQ

(j)
µγ (r)d0

]
. (10)

It is easy to develop Equation (10) for multi-component systems.
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The tensor order parameter of the LC molecule i is given by:(55)

Q(i)
αβ(r) = Si

(
3

2
nα(r)nβ(r)−

1

2
δαβ

)
, (11)

where nα is the α(= x, y, z) component of the director n and Si is the scalar
orientational order parameter of the molecule i:

Si =

∫
P2(n(r) ·Ω)fi(n(r) ·Ω)dΩ. (12)

The last term in Equation (2) shows the DP coupling between the director n and
the pitch field p = (0, 0, 1) of the NTB phase. Using the tensor order parameter
(Equation (11)) and the director n, it is given by(37, 39)

a3βFco/V = −
∑

i=A,B

γiϕipαQ(i)
αβ(r)pβ,

= −(γAϕASA + γBϕBSB)(1−
3

2
y), (13)

where pα is the α(= x, y, z) component of the pitch field p and γi is the dimen-
sionless parameter denoted the strength of the intrinsic coupling between p and

Q(i)
αβ of the LC molecule i. This coupling term γi has been discussed in the elastic

theory of the NTB phase and gives rise to a local oblique twisting power.(37–39)
For larger values of γi, the director n tends to align parallel to the pitch p, namely,
the system tends to be a homogeneous N phase. This term also mathematically has
the same form with the interaction between the director and the external electric
field.(27, 28)
Substituting Equation (11) into Equations (10) and (13), we obtain the free

energy of LC phases:(39)

FLC ≡ Fani + Fco = Fnem + Fdis, (14)

where we have separated the anisotropic free energy into two parts. One is the
nematic free energy of Maier-Saupe type(53):

fnem ≡ a3βFnem/V =
∑

i=A,B

ϕi

ni

∫
fi(n(r) ·Ω) ln 4πfi(n(r) ·Ω)dΩ

−1

2
νAϕ

2
AS

2
A − νABϕAϕBSASB

−1

2
νBϕ

2
BS

2
B − (γAϕASA + γBϕBSB), (15)

where we write νA ≡ νAA and νB ≡ νBB for simplicity. The other is the distortion
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free energy due to the spatial variation of the director for N∗ and NTB phases:

fdis ≡ a3βFdis/V =
1

2
νAϕ

2
AS

2
AgA(y,Q) + νABϕAϕBSASBgAB(y,Q)

+
1

2
νBϕ

2
BS

2
BgB(y,Q)

+
3

2
(γAϕASA + γBϕBSB)y, (16)

where we define the functions gi as a function of two order parameters: the pitch
wavenumber Q ≡ qd0 and the order parameter y ≡ sin2 ϵ of the NTB phase,

gA(y,Q) ≡ 1

2
(k̃2 − k̃3)Q

2y2 +
(1
2
k̃3Q− k̃2QA

)
Qy, (17)

gAB(y,Q) ≡ 1

2
(k̃2 − k̃3)Q

2y2 +
(1
2
k̃3Q− k̃2QAB

)
Qy, (18)

and

gB(y,Q) ≡ 1

2
(k̃2 − k̃3)Q

2y2 +
(1
2
k̃3Q− k̃2QB

)
Qy, (19)

with QA ≡ cA/νA, QB ≡ cB/νB and QAB ≡ cAB/νAB (Note that the notations QA

and QAB are described as Q0 and αx in the previous paper, respectively (51)). The
values of k̃2 and k̃3 correspond to the dimensionless elastic constants of the twist
(n · ∇ × n)2 and bend (n×∇× n)2 distortions, respectively.(39) We assume that
these constants are normalized by the typical value (∼ 10−6 dyn) of the elastic
constant of a pure LC molecule (ϕi = 1) with Si = 1. When ϕi = 1 (i = A or B)
and y = 1, the function gi has a minimum at Q = Qi. Apparently, the value of
Qi corresponds to the dimensionless wavenumber of the N∗ phase in the pure LC
molecule i and is given by Qi(≡ ci/νi) = d0q0i. When y = 0 (or a N phase), we
have fdis = 0.

2.1. Distribution functions in an equilibrium state

The orientational distribution function fA(n(r) · Ω) of the LC molecule A and
fB(n(r) ·Ω) of the component B are determined by the free energy (Equation (14))
with respect to these functions: (δFLC/δfi) = 0, under the normalization condition:∫

fi(n(r) ·Ω)dΩ = 1. (20)

We then obtain

fA(x) =
1

ZA
exp

[
ΓAP2(x)

]
, (21)

and

fB(x) =
1

ZB
exp

[
ΓBP2(x)

]
, (22)



October 20, 2017 11:18 Liquid Crystals amLC1705˙Rev2

8 Akihiko Matsuyama

where we define

ΓA ≡ nA

[
νAϕASA

(
1− gA(y,Q)

)
+ νABϕBSB

(
1− gAB(y,Q)

)
+γA(1−

3

2
y)

]
, (23)

and

ΓB ≡ nB

[
νBϕBSB

(
1− gB(y,Q)

)
+ νABϕASA

(
1− gAB(y,Q)

)
+γB(1−

3

2
y)

]
. (24)

The constants ZA and ZB are determined by the normalization condition (Equa-
tion (20)) as ZA = 4πI0(SA, SB) and ZB = 4πJ0(SA, SB), respectively. The func-
tions Im and Jm are defined as:

Im(SA, SB) ≡
∫ 1

0
[P2(x)]

m exp
[
ΓAP2(x)

]
dx, (25)

Jm(SA, SB) ≡
∫ 1

0
[P2(x)]

m exp
[
ΓBP2(x)

]
dx, (26)

respectively, where m = 0, 1, 2 · · · .
Substituting Equations (21) and (22) into (12), the scalar orientational order

parameters SA and SB can be determined by the two coupled-self-consistent equa-
tions:

SA = I1(SA, SB)/I0(SA, SB), (27)

and

SB = J1(SA, SB)/J0(SA, SB). (28)

Using the distribution functions (21) and (22), the free energy (Equation (14))
of the LC phases is given by

a3βFLC/V =
1

2
νAϕ

2
AS

2
A

(
1− gA(y,Q)

)
+νABϕAϕBSASB

(
1− gAB(y,Q)

)
+
1

2
νBϕ

2
BS

2
B

(
1− gB(y,Q)

)
−ϕA

nA
ln I0 −

ϕB

nB
ln J0. (29)

When y = 0, Equation (29) results in the nematic free energy of a binary mixture
of LC molecules.(46) The total free energy (F ) is given by the sum of Equations (3)
and (29) .
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2.2. Determination of the order parameter y and pitch length p

We here derive the equilibrium value y∗ and pitch wavenumber Q∗ in a thermal
equilibrium state. The procedure is to minimize the distortion free energy fdis
(Equation (16)), with respect to y and Q: (∂fdis/∂y)Q,Si

= 0 and (∂fdis/∂Q)y,Si
=

0. It is convenient to rewrite the distortion free energy fdis as follows:

fdis =
1

2
νA

(
ϕ2
AS

2
A + 2ϵnϕAϕBSASB + ϵnBϕ

2
BS

2
B

)
g(y,Q; η), (30)

where we define the distortion function:

g(y,Q; η) ≡ 1

2
(k̃2 − k̃3)Q

2y2 +

[(1
2
k̃3Q− k̃2η0QA

)
Q+ η

]
y, (31)

with the symbols

η0 ≡
ϕ2
AS

2
A + 2ϵxϕAϕBSASB + ϵxBϕ

2
BS

2
B

ϕ2
AS

2
A + 2ϵnϕAϕBSASB + ϵnBϕ2

BS
2
B

, (32)

η ≡ 3(γAϕASA + γBϕBSB)

νA(ϕ2
AS

2
A + 2ϵnϕAϕBSASB + ϵnBϕ2

BS
2
B)

, (33)

and the numerical parameters: ϵn ≡ νAB/νA, ϵnB ≡ νB/νA, ϵx ≡ cAB/cA, and
ϵxB ≡ cB/cA. Note that the η and η0 are given as a function of the concentration
and the orientational order parameter Si. When ϕA = 1, the value of η results in
that of the pure LC molecule A.(39) The value of η0 contains the chiral interac-
tion parameters: ϵx and ϵxB in the numerator, and the larger values of η0 favor a
N∗ phase. On the other hand, the value of η contains the director-pitch coupling
parameters: γA and γB, and the larger values of η favor a NTB or N phase.
Using Equation (31), we obtain the equilibrium value

y∗(≡ sin2 ϵ) =
k̃2η0QA/Q

∗ − k̃3

k̃2 − k̃3
, (34)

for the cone angle and

Q∗ = ±

√
2η

k̃3
, (35)

for the pitch wavenumber Q∗(∝ 1/p). The sign (+) shows the left-handed helix
with QA > 0 and the sign (−) is the right-handed helix with QA < 0. In the NTB

phases, both (+) and (−) twist appear in a sample with the same probability,
because the free energy has the same value. This result is in agreement with the
experiments(5, 11) and the elastic theory.(37) We can also derive the effective
twist K22 and bend K33 elastic constant of the twist (n · ∇ × n+ q0A)

2 and bend
(n×∇× n)2 distortions, respectively:(39)

aK22/kBT =
1

2

(
νAS

2
Aϕ

2
A + 2νABSASBϕAϕB + νBS

2
Bϕ

2
B

)
k̃2, (36)
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and

aK33/kBT =
1

2

(
νAS

2
Aϕ

2
A + 2νABSASBϕAϕB + νBS

2
Bϕ

2
B

)
k̃3. (37)

The ratio of the two elastic constants is given by a constant: K22/K33 =
k̃2/k̃3=const.(39)
The values of y∗ and Q∗ must be a minimum of the free energy (Equation (30)).

The minimum of the free energy function fdis, or minimum of the distortion func-
tion g, which depends on y and Q variables occurs when the Hessian is positive
definite matrix:

|H(y∗, Q∗)| =

∣∣∣∣∣ ∂
2fdis
∂y2

∂2fdis
∂y∂Q

∂2fdis
∂Q∂y

∂2fdis
∂Q2

∣∣∣∣∣
=

1

2
νA(ϕ

2
AS

2
A + 2ϵnϕAϕBSASB + ϵnBϕ

2
BS

2
B)k̃3(k̃2 − k̃3)Q

∗2y∗

= 3k̃3
[
γBSB + (γASA − γBSB)ϕA

](K22

K33
− 1

)
y∗ > 0. (38)

We then find the stable NTB phase appears when k̃2 > k̃3 > 0, or K22 > K33 > 0,
with γASA > 0 and γBSB > 0 because of y∗ > 0. In this paper, we focus on SA > 0
and SB > 0.

3. Numerical Results and Discussion

In this section we show the numerical results for the phase transitions of the NTB

phase (Sec. 3.1) and the phase diagrams (Sec. 3.2). In the following, we chose
the (+) sign (Qi > 0, Q > 0) for chirality without loss of generality. The same
discussions are also valid for the (−) sign (Qi < 0, Q < 0).

3.1. Phase transitions between N, N∗, and NTB phases

In this subsection, we examine how Equation (30) describes phase transitions be-
tween NTB, N

∗, and N phases. In the following, we set k̃2/k̃3(= K22/K33) = 5 and
k̃3=0.1 as a typical example. The pitch wavenumber QA(= 2πd0/p0) can be esti-
mated as QA ≃ 0.1 for the typical pitch length p0 ∼10 nm and d0 = 0.5 nm. The
distortion free energy (Equation (30)) is the quadratic function of y: g = Ay2+By,
and can be easily understood in the framework of a Landau expansion in a series of
y. The same arguments have been used in the elastic theory for the NTB phase.(37–
39)
Figure 2 shows the equilibrium value of the order parameter y (Equation (34))

as a function of η for various values of η0. With increasing η, the order parameter
continuously decreases from 1 at η = ηCT to 0 at η = ηTN . The phase transitions
N∗ −NTB and NTB −N are the second-order transitions because the value of the
order parameter y continuously changes. The N∗ −NTB transition takes place at
y∗ = 1. Using Equations (34) and (35), we obtain the critical value of the N∗−NTB

transition:

ηCT =
k̃3
2
(η0QA)

2, (39)
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Figure 2. Equilibrium values of the order parameter y (Equation (34)) as a function of η for various values
of η0. With increasing η, the order parameter continuously decreases from 1 at η = ηCT to 0 at η = ηTN .

at which we have Q∗
CT = ±η0QA. The phase transition between NTB and N phases

takes place at y∗ = 0. Using Equations (34) and (35), we obtain the critical value
of the NTB −N transition:

ηTN =
(η0QA)

2

2

k̃22
k̃3

=
( k̃2
k̃3

)2
ηCT , (40)

where we have Q∗
TN = (k̃2/k̃3)η0QA. The value of η, Equation (33), is important

to discuss the phase transitions.
We here summarize:
(1)When 0 < η < ηCT , we have the N∗ phase with y∗ = 1 and the wavenumber

of the N∗ phase is given by

QN∗ = η0QA. (41)

(2) When ηCT < η < ηTN , the NTB phase appears. The wavenumber of the NTB

is given by Equation (35). The order parameter y∗ of the NTB phase is given by
Equation (34).
(3)When ηTN < η, the distortion function fdis has a minimum at y = 0 and then

either N or I phase appears. When γi = 0, we have a disordered isotropic phase at
higher temperatures. When γi ̸= 0, we have a para-nematic (pN) phase with very
small orientational order Si and then the pN phase is almost an I phase. In this
regard, we may write pN(I) instead of pN .
The values of η and η0 depend on the concentration ϕA and the temperature

through the order parameters SA and SB. The orientational order parameters SA

and SB can be numerically solved from Equations (27) and (28).

3.2. Phase diagrams including I, N , N∗, and NTB phases of a pure LC
molecule.

In this subsection, we show the phase diagram on the temperature-concentration
plane for a pure banana-shaped LC molecule i(=A or B): ϕi = 1, with ni = 4
corresponding to the bend angle χi = 127◦.(39) We here define the temperature
parameter τi(∝ T ):(55)

τi ≡ T/TNI,i = 4.55/(niνi), (42)
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Figure 3. (a) Phase diagram on the coupling strength γi and temperature T/TCI,i plane for the pure LC
molecule i(= A,B) with ni = 4 and Qi = 0.1. The solid curves show the second-order phase transitions:
N − NTB and NTB − N∗ phase transitions. The dotted-curves show the first-order phase transitions:
pN − N , pN − NTB , and pN − N∗ phase transitions. The closed circles show the tricritical point and
the open circle shows the critical point (CP). The inset shows the phase diagram at the weak field γi.
(b) Order parameter y(= sin2 ϵ) (right) and the pitch wavenumber Q/Qi (left) of the NTB phase plotted
against the DP coupling γi for T/TCI,i = 0.9, 0.8, and 0.75.

where TNI,i shows the N−I phase transition temperature of the pure LC molecule
i. For the numerical calculations, we use νi = 4.55/(niτi).
Figure 3(a) shows the phase diagram on the DP coupling parameter γi (i = A,B)

and the reduced-temperature T/TCI,i plane for the pure LC molecule of ni = 4
and Qi = 0.1.(39) The temperature is normalized by the N∗ − I phase tran-
sition temperature TCI,i at γi = 0 and then the N∗ − I transition takes place
at τi(≡ T/TCI,i) = 1.(51) The solid curves show the second-order phase transi-
tions: N −NTB and NTB −N∗ transitions. The dotted-curves show the first-order
phase transitions: pN − N , pN − NTB, and I(pN) − N∗ transitions. The inner
phase diagram is an enlarged view for small values of γi. Note that the pN phase
has a very small orientational order for small γi and then it is experimentally an
isotropic phase. The orientational order parameters Si jump at the first-order phase
transition points. The open circle shows the critical point (CP), which has been
discussed in nematic liquid crystals under an external field(56, 57) and surface-
aligned nematic films.(58, 59) We also find two tricritical points (TCPs), closed
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circles, at which the second-order phase transition line meets the first-order one
and three phases coexist. We find that the NTB phase exists between the N and
N∗ phases and always appears at the lower temperatures of the N phase. This is
consistent with the experiment of achiral systems.(7) The upper critical field γhi of
the N − NTB phase transition increases with decreasing temperature. The lower
critical field γli slightly increases with decreasing temperature and the NTB ap-
pears between the N∗ and pN phases as a function of the temperature. The NTB

phase always appears at the higher temperatures of the N∗ phase with small γi,
although it has not experimentally observed yet. When the coupling strength γi is
very small, we have the first-order pN −N∗ phase transition at T/TCI,i ≃ 1. When
γli(≃ 0.0001) < γi < γhi (≃ 0.0017) between two TCPs, we have the first-order
pN − NTB phase transition. As the coupling γi increases, the temperature of the
first-order pN −N transition slightly increases toward the CP temperature. When
the value of γi is larger than that of the CP, the orientational order parameter
Si continuously changes and the first-order pN −N transition disappears.(39) As
the value of ni increases, the NTB phase shifts to the higher temperatures and the
value of the upper critical field γhi increases. Figure 3(b) shows the order parameter
y(= sin2 ϵ), or cone angle, and the pitch wavenumber Q/Qi of the NTB phase as a
function of the director-pitch coupling γi for T/TCI,i = 0.9, 0.8, and 0.75. The value
of y decreases with increasing the coupling strength γi and the pitch wavenumber
increases. For the pure LC molecules ϕA = 1, we have η0 = 1 in Equation (32).
Using Equation (40), the pitch wavenumber at the N∗ − NTB transition is given
by Q∗

TN/QA = (k̃2/k̃3)=5, where we have y = 0.
In this paper, we do not take into account chiral smectic C (S∗

c ) phases of achiral
LC molecules.(60) The N∗ phase appeared at the weak coupling γi may be the
S∗
c phases. However, it can be understood that most of the banana-shaped LC

molecule capable to form the NTB phase has a nonzero γi(> γli).

3.3. Phase diagrams for binary mixtures of banana-shaped LC molecules.

In this subsection, we show some phase diagrams of binary mixtures of banana-
shaped LC molecules. Before that, we summarize the numerical parameters.
Using Equation (42), we define the ratio T̃ between two transition temperatures

of the pure LC molecules:

T̃ ≡
TNI,B

TNI,A
=

nBνB
nAνA

= ϵnB

(
nB

nA

)
. (43)

Then the parameter ϵnB(≡ νB/νA) is given by

ϵnB = T̃

(
nA

nB

)
, (44)

and νB = ϵnBνA. We here assume that the nematic interaction νAB between the
dissimilar molecules can be proportional to the square root of the product of νA
and νB:(61)

ν̃ ≡ νAB√
νAνB

, (45)

where ν̃ is the constant characterizing the relative strength of the nematic in-
teraction of the dissimilar LC molecules to that of the same LC molecules. The
dependence of phase behavior for nematic binary mixtures on the parameter ν̃ has
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been discussed in details.(61) The smaller ν̃ values imply that the N phase tends
to be more stable in their pure N phase than in the mixed state, and vice versa.
Using Equations (42), (43), and (45), the nematic interaction parameter between
the dissimilar molecules is given by

ϵn ≡ νAB/νA = ν̃
√
ϵnB = ν̃

√
T̃

(
nA

nB

)
. (46)

Similarly, for the chiral interaction cAB between the dissimilar molecules, we put

c̃ =
cAB√
cAcB

, (47)

where c̃ is the constant characterizing the relative strength of the chiral interaction
of the dissimilar LC molecules to that of the same LC molecules. We then obtain
the chiral interaction parameter

ϵx ≡ cAB/cA = c̃
√
ϵxB, (48)

where the chiral parameter ϵxB is given by

ϵxB ≡ cB/cA = ϵnB

(
QB

QA

)
= T̃

(
nA

nB

)(
QB

QA

)
. (49)

Using ϵn and ϵx, we have

QAB(≡ cAB/νAB) = (ϵx/ϵn)QA. (50)

We here summarize the numerical parameters:

• ni(≡ Li/D = 2 tan(χi/2)) is the axial ratio of the LC molecule i with the
bend angle χi.

• Qi(≡ ci/νi) is the pitch wavenumber of the LC molecule i and is on the order
of ∼0.1 (see Section 3.1). It also means the ratio between the strength of chirality
and that of nematic ordering.(39)

• T̃ is the ratio between two transition temperatures of the pure LC molecules
(see Equation (43)).

• ν̃ is the constant related to the nematic interaction (see Equation (45)).

• c̃ is the constant related to the chiral interaction (see Equation (47)).

• γi is the DP coupling of the LC molecule i.

In the following, we set nA = 4 (χA = 127◦), nB = 3.5 (χB = 120◦), and
QA = QB = 0.1. We show the effects of the DP coupling γi on the phase diagrams.
In this paper, we focus on binary mixtures with a good solubility and then we take
the interaction parameter χFH = 0 in Equation (3). When χFH = 0, the isotropic
interaction between LC molecules A and B is zero and then there are no macro-
scopic phase separations in the mixture. However when χFH is non zero, the critical
point of the phase separations is given by χc

FH = (
√
nA+

√
nB)

2/2nAnB.(45) When
χFH > χc

FH , the phase separation takes place in the mixtures. It will be important
in LC polymer and LC mixtures.(46)
Figure 4 shows the phase diagrams on the temperature τA(= T/TNI,A) and

concentration (ϕB) plane with γA = 0.003 for various values of γB: γB = 0 (a),
γB = 0.0001 (b), γB = 0.001 (c), γB = 0.003 (d), γB = 0.005 (e), and γB = 0.016
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Figure 4. Phase diagrams on the temperature (T/TNI,A) and concentration (ϕB) plane with T̃ = 0.95,
ν̃ = 0.85, c̃ = 1.05, and γA = 0.003 for various values of γB : γB = 0 (a), γB = 0.0001 (b), γB = 0.001
(c), γB = 0.003 (d), γB = 0.005 (e), and γB = 0.016 (f). The solid curves show the second-order phase
transitions: N−NTB and NTB −N∗ transitions. The dotted-curves show the first-order phase transitions:
pN − N , pN − NTB , and pN(I) − N∗ transitions. Closed circles show the tricritical points (TCPs), at
which the second-order phase transition line meets the first-order one and three phases coexist.

(f). We here define T̃ (≡ TN∗I,B/TNI,A) = 0.95, ν̃ = 0.85, and c̃ = 1.05. From
Equation (44), we then obtain ϵn = 0.88, ϵnB = 1.086, ϵx = 1.1, and ϵxB =
1.086. The reduced-temperature T/TNI,A is normalized by the N − pN transition
temperature of the pure molecule A at γA = 0.003 (see Figure 3 (a)). The N−NTB

transition of the pure molecule A occurs at T/TNI,A = 0.913 for γA = 0.003. The
solid curves show the second-order phase transitions: N − NTB and NTB − N∗

transitions. The dotted-curves show the first-order phase transitions: pN − N ,
pN−NTB, and I(pN)−N∗ transitions. The closed circles show the tricritical points
(TCPs), at which the second-order phase transition line meets the first-order one.
Figure 4(a) shows the phase diagram for γB = 0. In this case, the director-pitch
coupling of the molecule B is zero and then the I −N∗ phase transition only takes
place, as shown in Figure 3(a), for the pure molecule B (ϕB = 1) at T̃ = 0.95.
The pN −N phase transition curve has a minimum as a function of ϕB because of
ν̃ = 0.85(< 1): the nematic interaction between dissimilar molecules is weak relative
to that in the same species. The N − NTB transition curve has a maximum as a
function of ϕB at the dilute region because of c̃ = 1.05(> 1): the chiral interaction
between dissimilar molecules is strong relative to that in the same species. The
pN −N transition curve meets the N −NTB transition curve at the TCP. We also
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Figure 5. (color online) (a) Order parameters SA, SB , and y plotted against the temperature for various
values of ϕB=0, 0.2, 0.6, 0.9 with γB = 0.001 in Figure 4(c). (b) pitch length p/p0 plotted against the
temperature for various values of ϕB=0, 0.6, 0.9 with γB = 0.001 in Figure 4(c).

find that the pN −NTB and the NTB −N∗ transition curves cross at the another
TCP, where pN , NTB, and N∗ phases coexist. The first-order pN − NTB phase
transition appears and the stable NTB phase appears in the broad range on the
phase diagram. Figure 4(b) shows the phase diagram for γB = 0.0001. For the pure
LC molecule B (ϕB = 1), we have the first-order pN−NTB transition at τA = 0.95
and the second-order NTB −N∗ phase transition at τA = 0.895. At τA ≃ 0.9, the
NTB phase appears over all concentration ranges. As increasing the value of γB,
the NTB−N∗ transition temperature decreases and the TCP of the N−NTB phase
transition shifts to higher concentrations (Figure 4(c)). When γB = 0.003, we have
the pN − N and N − NTB phase transitions at ϕB = 1. The N phase appears
between the pN and NTB phases and the TCP disappears (Figure 4(d) and (e)).
The similar phase diagrams have been experimentally observed.(17, 19–21) As
shown in Figure 3(a), as increasing γB, the pN −N transition temperature slightly
shifts to higher temperatures and the N − NTB transition temperature shifts to
lower temperatures. For the large γB, (Figure 4(f)), we find the critical point (CP,
open circle) at the end of the pN −N transition curve on the phase diagram. The
N phase becomes dominant on the phase diagram because the director favors to
align parallel to the pitch axis for a large γB.
Figure 5(a) shows the order parameters SA, SB, and y plotted against the tem-

perature for various values of ϕB(=0, 0.2, 0.6, 0.9) with γB = 0.001 (Figure 4(c)).
We have the first-order pN −N transition, where the orientational order parame-
ters jump as a function of temperature. The value of SA is larger than that of SB

because of nA > nB and T̃ < 1. The orientational order parameters are nonzero in
the high temperature region, which is the evidence of the pN phase that is not dis-
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Figure 6. Phase diagrams on the temperature (T/TNI,A) and concentration (ϕB) plane with T̃ = 1.05,
ν̃ = 1.1, c̃ = 1.05, QA = QB = 0.1, and γA = 0.003 for various values of γB : γB = 0 (a), γB = 0.0001 (b),
γB = 0.001 (c), γB = 0.003 (d), γB = 0.005 (e), and γB = 0.016 (f). The solid curves show the second-
order phase transitions: N−NTB and NTB −N∗ transitions. The dotted-curves show the first-order phase
transitions: pN − N , pN − NTB , and pN(I) − N∗ transitions. Closed circles show the tricritical points
(TCPs), at which the second-order phase transition line meets the first-order one and three phases coexist.

ordered isotropic phase, while the values of Si are very small values. Then the pN
phase corresponds to the I phase observed experimentally.(17) When ϕB = 0.2, the
second-order N −NTB transition occurs at τA = 0.923, where the order parameter
y of the NTB phase continuously increases from zero with decreasing temperature.
When ϕB = 0.6 and 0.9, we have the first-order pN −NTB phase transition, where
the order parameter Si and y jump at the transition temperature. Figure 5(b) shows
the pitch length p/p0 plotted against the temperature for various values of ϕB=0,
0.6, 0.9 with γB = 0.001 in Figure 4(c). When ϕB = 0, the wavenumber at the
N −NTB phase transition temperature is given by Q∗

TN/QA = (K2/K3) = 5 (see
below Equation (40)) and the pitch p/p0 continuously increases from 0.2(=K3/K2).
When ϕB = 0.6 and 0.9, the pitch p/p0 discontinuously jumps at the pN − NTB

transition and increases with decreasing temperature.
Figure 6 shows the phase diagrams on the temperature τA(= T/TNI,A) and

concentration (ϕB) plane with γA = 0.003 for various values of γB: γB = 0 (a), γB =
0.0001 (b), γB = 0.001 (c), γB = 0.003 (d), γB = 0.005 (e), and γB = 0.016 (f). We
here set T̃ (= TN∗I,B/TNI,A) = 1.05, ν̃ = 1.1, and c̃ = 1.05. From Equation (44),
we obtain ϵn = 1.2, ϵnB = 1.2, ϵx = 1.15, and ϵxB = 1.2. When ν̃ > 1, the pN −N
transition curve has a maximum as a function of ϕB. The N − NTB transition
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Figure 7. (color online) Comparisons between the theory and the experimental phase diagram for the
binary mixtures of two LC molecules KA (molecule A) and CBF9CBF (molecule B): the open squares
denote the N − I transition and the closed squares denote the N − NTB transition.(17) The theoretical
solid curve shows the second-order N −NTB transition and the dotted-curves show the first-order N −pN
transition with γA = 0.0036 and γB = 0.002.

temperature increases with increasing ϕB because of c̃ = 1.05(> 1) in Figures 6(a)-
(d). As increasing γB, the TCP shifts to higher concentrations and the N −NTB

transition appears for the pure LC molecule B. In Figure 6(d), the N phase appears
between the pN and NTB phases for all concentrations. Further increasing γB, the
N − NTB transition temperature of the binary mixture decreases with increasing
ϕB (Figure 6(e)). In Figure 6(f), the N phase becomes dominant on the phase
diagram and the CP appears at the end of the pN −N transition.
Our theory predicts various phase diagrams depending on the strength of the DP

coupling γi of the LC molecule i. Some phase diagrams have been observed exper-
imentally. In the next subsection, we compare our theory with the experimental
phase diagrams.

3.4. Comparisons of theory and experimental phase diagram

In this subsection, we compare our theory with experimental phase diagrams for
binary mixtures of banana-shaped LC molecules. In the followings, we set QA =
QB = 0.1.
Figure 7 shows the comparison between our theory (solid and dotted curves) and

the experimental phase diagram for the binary mixtures of two LC molecules KA
(molecule A) and CBF9CBF (molecule B): the open squares denote the I − N
transition and the closed squares show the N − NTB transition.(17) The exper-
imental phase diagram is similar to Figure 4(d) and 6(d), where the N phase
appears between pN(I) and NTB phases for all concentrations. The theoretical
solid curve shows the second-order N−NTB transition and the dotted-curve shows
the first-order pN − N transition. We here use nA = nB = 4 for the molecu-
lar parameters. The I − N and N − NTB transition temperatures of the pure
molecule A are TNI,A = 348 K and TNTBN,A = 295 K, respectively. We then ob-
tain TNTBN,A/TNI,A ≃ 0.848, which corresponds to the ratio of the two transition
temperatures at γA = 0.0036 in Figure 3(a). The I −N and N −NTB transition
temperatures of the pure molecule B are TNI,B = 359 K and TNTBN,B = 353 K,
respectively, and we set γB = 0.002 to be the best fitting. We also obtain the
numerical parameter T̃ = TNI,B/TNI,A = 1.031. The other numerical parameters
set ν̃ = 0.97 and c̃ = 1.0. The theory can quantitatively describe the experimental
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Figure 8. (color online) Order parameters (a) and pitch length p (b) as a function of ϕB for various
temperatures in Figure 7. The pitch length is calculated by p = 2πd0/Q with d0 = 0.5 nm.

phase diagram. The N − pN(I) transition curve exhibits a slight concave curva-
ture because of ν̃ < 1 and the N − NTB transition curve linearly increases with
increasing ϕB because of c̃ = 1.0. The NTB phase is enhanced by adding the LC
dimer CBF9CBF and the N phase appears between the narrow temperature range
at ϕB = 1. As shown in Figure 3(a), the N phase between the pN and NTB phases
can be controlled by the strength of the director-pitch coupling γi. As decreasing γi,
the two transition temperatures TNTBN,i and TNI,i approach and theNTB phase ap-
pears at higher temperatures. In this mixture, we have γA(= 0.0036) > γB(= 0.002)
and the DP coupling of the KA (molecule A) is larger than that of the CBF9CBF
(molecule B).
Using the same numerical parameters, we calculate the pitch length of the NT B

phase on Figure 7. Figure 8 shows the order parameters (a) and pitch length p (b)
as a function of ϕB for various temperatures in Figure 7. The pitch length of the
NTB phase is calculated by p = 2πd0/Q with d0 = 0.5 nm. When T/TNI,A = 0.9,
the NTB phase appears above ϕB > 0.29 and the orientational order parameters
(a) are almost constant Si ≃ 0.6 and the pith length (b) increases with ϕB. When
T/TNI,A = 0.98, the pN phase with a small orientational order Si ≃ 0.04 appears
between two N phases and then the experimental I phase corresponds to the pN
phase in our model.
Figure 9 shows the comparison of our theory (solid and dotted curves) with the

experimental phase diagram for the binary mixtures of two LC molecules CB9CB
(molecule A) and cpd8 (molecule B): the open squares denote the N−I transition,
the closed squares denote the N −NTB.(19) The theoretical solid curve shows the
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Figure 9. (color online) Comparisons between the theory and the experimental phase diagram for the
binary mixtures of two LC molecules CB9CB (molecule A) and cpd8 (molecule B): the open squares denote
the N − pN(I) transition and the closed squares denote the N −NTB transition.(19) The theoretical solid
curve shows the second-order N −NTB transition and the dotted-curves show the first-order pN(I) −N
transition with γA = 0.0034 and γB = 0.003.

second-order N−NTB transition and the dotted-curve shows the first-order pN−N
transition. We use nA = 2.9 (χA = 110◦) and nB = 4.1 (χB = 128◦) due to the
experimental bend angles. The N − I and NTB −N transition temperatures of the
CB9CB (molecule A) are TNI,A = 394.5 K and TNTBN,A = 378.4 K, respectively.
We then obtain TNTBN,A/TNI,A ≃ 0.959 and use γA = 0.0034. The N − I and
NTB − N transition temperatures of the cpd8 (molecule B) are TNI,B = 426.3
K and TNTBN,B = 382.9 K, respectively, and we set γB = 0.003 for the coupling

parameters to be the best fitting. We also obtain the numerical parameter T̃ =
TNI,B/TNI,A = 1.08. The other numerical parameters set ν̃ = 0.98 and c̃ = 1.0. The
theory can quantitatively describe the experimental phase diagram. The N−pN(I)
transition curve exhibits a slight concave curvature because of ν̃ = 0.98 and the
N −NTB transition curve linearly increases with increasing ϕB because of c̃ = 1.0.
In this mixture, we have TNTBN,A ≃ TNTBN,B and the strength of the DP coupling
has almost the same value: γA(= 0.0036) ≃ γB(= 0.003)
Figure 10 shows the order parameters (a) and the pitch length p (b) as a function

of ϕB at T/TNI,A = 0.9, 0.92, 0.94 in Figure 8. The pitch length is calculated by
p = 2πd0/Q with d0 = 0.5 nm. The order parameters (Figure 10(a)) are almost
constants as a function of ϕB. As decreasing temperature at a given ϕB, the order
parameters and the pitch length increase. In the NTB phase, the orientational order
parameter SB is slightly larger than SA, because of nB > nA and T̃ > 1. The order
parameter y has small values. For example, when y = 0.02, we have the cone angle
ϵ = 10◦. The pitch length (Figure 10(b)) has a minimum value as a function of ϕB.
Using Equation (35), the pitch length of the NTB phase is approximately given by

p

p◦A
≃

√
1− 2(1− ϵn)ϕB + (1− 2ϵn + ϵnB)ϕ2

B

1 +
(γB

γA
− 1

)
ϕB

, (51)

where we have assumed SA ≃ SB and p◦A ≡ d0(k̃3νASA/6γA)
1/2 is the pitch length

of the pure LC molecule A. From Equation (46), we have ϵn = 0.856 and ϵnB =
0.764. Then the pitch length has a concave curvature as a function of ϕB. For
larger values of ϵn(> 1), for example, in Figure 6(d), the pitch length has a convex
curvature as a function of ϕB. It has been observed that the pitch of the NTB phase
is about p = 8 nm in the bent molecular dimers CB7CB.(7) The orientational order
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Figure 10. (color online) Order parameters (a) and pitch length p (b) of the NTB phase as a function of
ϕB at T/TNI,A = 0.9, 0.92, 0.94 in Figure 9. The pitch length is calculated by p = 2πd0/Q with d0 = 0.5
nm.

parameter increases from 0.41 to 0.73 with decreasing temperature in a mixture of
CB7CB and LC molecule KA.(17) Our numerical calculations are the same order
with the experimental data.
Figure 11 shows the comparison of our theory (solid and dotted curves) with

the experimental phase diagram for the binary mixture of two LC dimers 2O.5.O2
(molecule A) and 2O.3.O2 (molecule B): the open squares denote the N − I tran-
sition, the closed squares denote the N − NTB, and the open circles show the
NTB − I transition.(20) The LC dimers 2O.5.2O and 2O.3.2O have odd spacers 5
and 3, respectively. We here set nA = 4 (χA = 127◦) and nB = 3.7 (χB = 123◦).
The experiment shows that the NTB phase is formed directly from the I phase
via a strong first-order phase transition,(20) which is demonstrated in Figure 5(a).
The pure LC molecule B has the NTB − I transitions and then the experimental
NTB − I transitions correspond to the phase diagrams with the weak DP cou-
pling γB as shown in Figure 4(b)-(c). We here use γB = 0.001 as shown in Fig-
ure 4(c) for the numerical calculation. The N − I transition and the NTB − N
transition temperature of the 2O.5.2O molecule (A) are TNI,A = 385.3 K and
TNTBN,A = 366.9 K, respectively. We then obtain TNTBN,A/TNI,A ≃ 0.952 and
can estimate γA = 0.00255 from Figure 3(a) for the best fitting. The NTB − I
transition temperature of the 2O.3.2O molecule (B) is TNTBI,B = 360.4 K and we

then obtain the numerical parameter T̃ = TNTBI,B/TNI,A = 0.9353. We also set
ν̃ = 0.95 and then we have ϵn = 0.96, ϵx = 0.99, and ϵnB = 1.011. The chiral
parameter is changed: c̃ = 0.95, 1.0 and 1.1. The pN(I) −N transition curve has
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Figure 11. (color online) Comparisons between the experimental phase diagram and theory. The symbols
show the experimental phase diagram for the binary mixtures of two LC dimers 2O.5.O2 (molecule A)
and 2O.3.O2 (molecule B): the open squares denote the N − I transition, the closed squares denote the
N − NTB , and the open circles show the NTB − I transition.(20) The theoretical solid curves show the
second-order N −NTB transition and the dotted-curve shows the first-order phase transitions: pN(I)−N
and pN(I)−NTB transitions. The chiral parameter is changed: c̃ = 0.95, 1.0 and 1.1, with γA = 0.00255
and γB = 0.001.

a concave curvature as a function of ϕB because of ν̃ < 1. The N − NTB transi-
tion for c̃ > 1 (c̃ < 1) has a convex (concave) curvature as a function of ϕB. The
theory indicates that the TCP (closed circle) shifts to lower concentrations of ϕB

with increasing the chiral parameter c̃. The theory can qualitatively describe the
experimental phase diagram. The pN(I)−NTB phase transition is the first-order
phase transition, where the orientational order parameter Si jumps and strongly
depends on the nematic interaction parameter ν̃. Then the pN(I) − NTB phase
transition curve does not depend on the chiral interaction parameter c̃. The chi-
ral interaction parameter c̃ affects the second-order N −NTB phase transition. In
this mixture, we have γA(= 0.00255) > γB(= 0.001) and the DP coupling of the
2O.5.2O (molecule A) is larger than that of the 2O.3.2O (molecule B). As shown
in Figure 3(a), the pN(I)−NTB transition exists between γlB < γB < γhB and the
N − NTB transition appears with γhA < γA. The experimental phase diagram is
similar with Figure 4(a)(b)(c), in which γA > γB.
Figure 12 shows the order parameters (a) and pitch length p (b) as a function

of ϕB at T/TNI,A = 0.9, 0.92, 0.94 with c̃ = 1 in Figure 10. The pitch length is
calculated by p = 2πd0/Q with d0 = 0.5 nm. As decreasing temperature at a given
ϕB, the order parameters and the pitch length increase. When T/TNI,A = 0.9 and
0.92, the mixture is in the NTB phase, where the value of the order parameter
y and the pitch length (p) increase with increasing ϕB. When T/TNI,A = 0.94,
we have the second-order NTB − N phase transition at ϕB = 0.52, at which the
value of y continuously changes with decreasing ϕB and the first-order N − pN(I)
transition takes place at ϕB = 0.56, at which the orientational order parameters
jump (Figure 12(a)). Due to the experimental observations of the quadrupolar
splittings for the 2O.7.2O molecule, the order parameter grows from about 0.27 at
TNI to about 0.51 before the transition to the NTB and has grown to 0.56 at the
NTB phase with decreasing temperature.(3, 24)
We demonstrate that the DP coupling γi of the LC molecule becomes an impor-

tant parameter to understand the phase behaviors including the NTB phase. Our
theory predicts that there are various phase diagrams, depending on the value of
γi. It is worth to point out that the Figures 4(a)(b) and 5(a)(b), including the N∗

phase, with the weak coupling γi have not been observed yet. These phase diagrams



October 20, 2017 11:18 Liquid Crystals amLC1705˙Rev2

Twist-bend nematic in binary mixtures 23

Figure 12. (color online) Order parameters (a) and pitch length p (b) as a function of ϕB at T/TNI,A =
0.9, 0.92, 0.94 with c̃ = 1 in Figure 10. As decreasing temperature at a given ϕB , the order parameters and
the pitch length increase. The pitch length is calculated by p = 2πd0/Q with d0 = 0.5 nm.

may be observed in the mixtures of a LC dimer such as CB7CB and a LC molecule
with a N∗ − I transition. At the strong coupling γi, the CP appears as shown
in Figures 4(f) and 5(f), which also have not been observed yet. The parameter
γi corresponds to the local oblique twisting power and changes from NTB to N
phase, in which the director couples with the helical axis and affects the range of
the NTB phase. The experimental verification of the coupling parameter γi, or the
local oblique twisting power, is open questions.
Our theory shows good agreements with the experimental phase diagrams. Most

of the experimental phase diagrams observed so far has been fitted with γi =
0.001 ∼ 0.003. These values correspond to the external electric field, applying
parallel to the helix axis direction, approximately on the order of ∼ 1 V/µm.(39)
That means the strength of the director-pitch coupling corresponds to the local
electric field on the order of ∼1 mV per a pitch length (order of nm) of the NTB

phase and it may give rise a local polarization. This becomes the local twisting
power induced by the stacking parallel to the pitch axis of the banana-shaped LC
molecules with a molecular dipole moment.(22) .
The flexoelectric effects may be important to the free energy of a NTB phase.

In a usual N phase, the director n is equivalent to −n and hence the electric
polarization is zero. However a splay or a bending distortion can create an electric
polarization pf which is proportional to the first-order space derivatives of the
director n.(55) Due to the recent theoretical study based on the Frank elastic
theory,(38) the flexoelectric polarization (pf ) in the NTB phases is perpendicular
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to the nematic director (Equation (1)) and then the director-flexoelectric coupling
is zero: n·pf = 0. Then the contribution to the free energy due to the flexoelectricity
may be given by the coupling −E · pf , where E is an applied electric field. The
coupling parameter γi between the director and helical axis is affected by the
external magnetic or electric field applied parallel to the helical axis.(28, 38) Our
theory can be extended to the NTB phase including the flexoelectricity under the
external fields.

4. Summary

We have demonstrated that our theory is capable of predicting a variety of phase
diagrams for binary mixtures of banana-shaped LC molecules, in which the DP
coupling (−γi(n · p)2) can be an important role for the spontaneous formation of
the NTB phase. The stable NTB phase appears in the mixtures of K22 > K33.
The strength γi of the DP coupling for the LC molecule can affect the NTB and
phase diagrams. Physically, this parameter corresponds to a local oblique twisting
power of the NTB phase. For the weak coupling parameters, we have the first-
order pN(I) − NTB transition with the TCP on the temperature-concentration
plane (Figure 4(a)-(c) and 5(a)-(c)). Note that the pN phase has a very small
orientational order and then it is realistically the I phase. Further increasing γi,
theNTB phase appears at lower temperatures of theN phase on the phase diagrams
(Figure 4(d)(e) and 5(d)(e)). At the strong coupling γi, the NTB phase disappears,
or shifts to lower temperatures, and the first-order pN(I) −N transition appears
with the CP (Figure 4(f) and 5(f)). The parameters ν̃ and c̃ relate the shape of
the pN(I)−N and N −NTB transition curves on the phase diagram, respectively.
When c̃ > 1 (c̃ < 1), the N−NTB transition curve has a convex (concave) curvature
as a function of the concentration.
Our theory has a good agreement with the experimental phase diagrams of the

binary mixtures. The order parameters and pitch length of the NTB phase are
predicted as a function of the concentration for the experimentally observed phase
diagrams. We have shown that most of the experimental phase diagrams can the-
oretically be reproduced with the values of γi = 0.001 ∼ 0.004. These values
correspond to the realistic values of the local oblique twisting power for the NTB

phase. Our theory can also be applicable to study phase separations in such binary
mixtures.
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